
AA1551AIR FORCE JUST OF TECH VRIB44T-PATTERSONd APB OH SCHOO--ETC F/f9/

UNCLASSIFIED AFIT/OCS/MA/S*51 N*uuuuh4h

iOf
-&

4

44

i7H

ifi

0i

DEPART MENTOFTHE AIR FORCE

AM UNNE&SITY(ATC)

LU AIR FORCE INSTITUTE OF TECHNOLOGY4

Wright-Patterson Air Force Base, Ohio

S2 06 14

1-

AFIT/GZS/M/U2M-I

SOFTWARE QUALITY METRICS: A SOFTWARE
MANAGEMENT MONITORING METHOD FOR

AIR FORCE LOGISTICS (X)MMAND IN ITS
SOFTWARE QUALITY ASSURANCE PROGRAM
FOR THE QUANTITATIVE ASSESSMENT OF
THE SYSTEM]EVELOPMENT LIFE CYCLE

UNDER CONFIGURATION MANAGEMENT

THESIS (",
AFIT/GCS/MA/82M-l Stanley J. Jarzombek, Jr.

2nd Lt USAF

Approved for public release; distribution unlimit.d

AFIT/GCS/MA/82M-1

SOFTWARE QUALITY METRICS:

A SOFTWARE MANAGEMENT MONITORING METHOD FOR

AIR FORCE LOGISTICS COMMAND IN ITS SOFTWARE QUALITY

ASSURANCE PROGRAM FOR THE QUANTITATIVE ASSESSMENT OF

THE SYSTEM DEVELOPMENT LIFE CYCLE

UNDER CONFIGURATION MANAGEMENT

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of AccO.sion For

Master of Science NTIS CGA&I -
DTIC Ta-
Unannounced
Justification-

By.-
by Distribution/

Availability Codes
Stanley J. Jarzombek, Jr. , B.A., B.B.A. Avail and/or

Dist Special

2nd Lt USAF

Graduate Computer Information Systems I i
March 1982

VNaptern/
Approved for public release; distribution unlimited.

PREFACE

I wish to express my sincere appreciation to my thesis

advisor, Dr. Daniel E. Reynolds, for his guidance,

interest, and motivation throughout this thesis effort.

I wish to thank Ray Ruby for motivating my initial

interest in software quality assurance and for providing

comments to this thesis.

Thanks go to Major Ross, who contributed comments and

input to this thesis effort.

A note of appreciation goes to the personnel in

AFLC/LM, especially Richard Woodward, who provided valuable

information about AFLC's software development procedures.

A special note of acknowledgement is due to

Dave Markham and James McCall for providing recent

information concerning the development of software quality

metrics.

A very special expression of appreciation is due my

wife, PJ, for her patience, understanding, and support,

which helped me accomplish this task.

Final thanks go to Sheila Finch for her dedication and

competence in the typing of this thesis.

I ii....

CONTENTS

Page

PREFACE ii

LIST OF FIGURES v

LIST OF TABLES. vi

17 ABSTRACT vii

I. INTRODUCTION: BACKGROUND INFORMATION 1

Software Life Cycle Implications 2
AFLC's Software Development Efforts 5
Failures of Current Development Efforts. . .. 7
Current SQA Efforts 9
Measuring Software Quality 12
Justification for SQA. 13
Conceptualization of the Decision-Making
Process 14

Front-End Plannin, Through Configuration
Management-- .-16

A Framework for Software Quality Assessment.. 17
Background Abstract 20
Problem Statement 21
Research Objectives 21
Scope of Research 22

II. SOFTWARE QUALITY METRICS: AN OVERVIEW 24

Quality Measurement in Perspective 24
Categories of Metrics 25
Complementary Use of Metrics with SQA 25
Comparison of Metrics, Inspections, and

Walk-Throughs 28
Identifying Software Quality Requirements. .. 30
Techniques for Applying Metrics 42

III. RESEARCH METHODOLOGY 44

Establishing the Framework 44
Model of Development Decision Process.... 46
Metric Application 49
Metric Integration 50

IV. SQA TOOLS AND TECHNIQUES: A SURVEY OF DOD
AND INDUSTRY 51

Techniques, Tools, and Methodologies 53
Toolsmithing 57

* Automated Measurement Services 64
Report Generation Services 68

Chapter Summary 73

, iii

CONTENTS

Page

V. SDLC DECISION-MAKING MODEL: A MAPPING TO SQM . . 75

The Software Development Life Cycle 75
Modeling the Decisioning Process 77
Inposing Metric Framework on the Model 81
Monitoring the Development Effort 86
A Conceptual Walk-Through 88
Metric Application Throughout the SDLC 92

Chapter Summary 107

VI. SQA INFORMATION REQUIREMENTS: A CHECKLIST. . . . 109

Documentation Requirements 109
Application for Checklists with'SQM ill

VII. THESIS RECOMMENDATIONS: GUIDELINE FOR
A SQA PROGRAM 120

Research Summary 120

Research Recommendations 122

REFERENCES USED 126

APPENDIX A: METRIC WORKSHEETS 138

APPENDIX B: WORKSHEET REQUIREMENTS 153

APPENDIX C: EXPLANATION OF METRICS 160

APPENDIX D: METRIC ALGORITHMS 198

APPENDIX E: DEFINITION OF QUALITY ATTRIBUTES. 208

APPENDIX F: SOFTWARE SYSTEM DEVELOPMENT
LIFE CYCLE FOR AFLC/LM 223

APPENDIX G: GLOSSARY OF TERMS FOR SOFTWARE
CONFIGURATION MANAGEMENT 268

APPENDIX H: GLOSSARY FOR SQA TOOLS AND TECHNIQJES . 283

APPENDIX I: TOOL SURVEY295

APPENDIX J: PROCEDURE FOR ASSESSING SOFTWARE
QUALITY 307

APPENDIX K: SAMPLE OF AMT REPORTS 317

iv

LIST OF FIGURES

Figure Page

1 Software Development Life Cycle (SDLC). . . 3

2 A Software Development Problem 4

3 Configuration Management for AFLC 10

4 The Software Development-Environment
Interaction System 15

5 Software Quality Framework 19

6 Application of the Metric Worksheets. . . . 41

7 AFLC's Software System Development
Life Cycle76

8 Software System Development-Environment
Interaction System 80

9 Defining the User's System Requirements . 82

10 SQM Applied to the Decision-Making Process. 89

11 Requirements Analysis 93

12 Design Pha3e97

13 Programming and Checkout 101

14 Test and Integration 105

15 The Mapping of SQM to the SDLC 108

16 ADS Development 224

17 Matrix of Software Tools Having Metric
Applicability 300

18 Tool Usage 306

19 Normalization Function for Flexibility
During Design 314

20 Determination of Level of Confidence. . . . 315

:- = " . .. -- " -- ' ' |111 " I li
" -

... . -

LIST OF TABLES
Table Page

I How Software Metrics Complement
Quality Assurance 26

II Comparison of Key Properties of

Inspections, Walk-Throughs and Metrics . . . 29

III Software Quality Requirements Survey Form . 32

IV System Characteristics and Related
Quality Factors 33

V Impact of Not Specifying or Measuring
Software Quality Factors 34

VI Relationships Between Software
Quality Factors 35

VII Some Tradeoffs Between Software
Quality Characteristics 36

VIII Software Criteria and Related
Quality Factors 38

IX Software Attributes Identified in

the Literature 52

X SQA Tools and Techniques 55

XI Supporting Techniques for SQA Functions. . . 56

XII Technique Effectiveness in Assessing
Quality Properties 58

XIII Supporting Tools for SQA Functions 59

* XIV Tool Effectiveness in Assessing
Quality Properties 60

xV Factors Impacting Tool and Technique
Selection 62

XVI Minimuii Set of Tools and Techniques 63

XVII Automated Metric Data 66

XVIII Support to Personnel 72

XIX Quality Factor Ratings 85

XX Definitions Relating to Reliability
and Maintainability 87

XXI Normalization Functions 312

vi

ABSTRACT

Software Quality Assurance (SQA) is recognized as an

essential function needed to monitor the software system

development life cycle (SDLC). The inability to

objectively assess the quality of the software system, as

it is being developed, has caused implementation problems,

cost and schedule overruns, and the delivery of

end-products that are difficult to maintain and often fail

to satisfy user requirements.

The framework established for Software Quality

Metrics (SQM) provides goal-directed system specifications

and the ability to quantitatively assess the quality of the

system under development. The Automated Measurement Tool

(AMT), which operationalizes the application of SQM,

functions as the core of a Decision Support System,

providing quantitative measures and various levels of

reports.

An analysis of current SQA aids enabled the

recommendation of a minimum set of tools and techniques to

be used by the SQA program for monitoring the SDLC.

The SDLC has been envisioned as an iterative process

controlled by management. Recognizing the functional

impact of specific information as the key to objectively

vii

2-R

monitoring and controlling the software system development,

the decision-making model was conceptualized as three

subsystems within each phase of the SDLC: scanning

(afferent), organizing (intelligence), and decision

(efferent). Because the SQM concepts are based on the

availability of key information, the discussion of the

model pinpointed the timing for the appropriate documents

that should contain specific information which is needed to

assess the software quality. Moreover, the use of

checklists by system developers highlights a prescriptive

method of goal-directed development.

In all, the thesis provides justification for usincg

Software Quality Metrics by reviewing the need anc.

demonstrating how the SQM concepts can now be used by

AFLC/LM.

viii

CHAPTER I

INTRODUCTION; BACKGROUND INFORMATION

In recent years there has been an increased emphasis to

establish Quality Assurance (QA) programs at all levels

within the Department of Defense. DoP Directive 4155.1

defined Quality Assurance as a planned and systematic

pattern of all actions necessary to provide adequate

confidence that material, data, supplies, and services

conform to establisbed technical requirements and achieve

satisfactory performance (Ref 37).

The use of MIL-S-52779A, Software Quality Assurance

Program Requirements, in DoD contracts (requiring

government contractors to establish a software QA

function), has generated an increased awareness of the need

for QA in the development of software; yet many DoD

organizations have been unable to internally establish

Software Quality Assurance (SQA) programs (Ref 52). The

" Air Force Logistics Command (AFLC) has recognized the need

for a SQA program mainly because of the cost of producing

and maintaining its wide spectrum of conventional software

systems: Management Information Systems (MIS) for

Plans/Programs/Budget, Data Base systems, [nventory

systems, Accounting systems, and Automated Logistics

Maintenance systems (Ref 38). AFLC has recognized that

"maintenance costs for software range from 50-75% of total

system costs, thus, the command position is to design and

develop software that is easy to maintain in order to

reduce operational phase costsm (Ref 89).

Organizationally, AFLC has six main users of

conventional software systems: Procurement & Management

4 (PM), Personnel (MP), Logistics Operations (LO),

Maintenance (MA), Comptroller (AC), and Logistics

Management (LM). AFLC/LM is responsible for software

development within AFLC. It provides the Project

Management (LMX), Configuration Management and Project

Engineering (LRME), Technical Support (LMT), ADP Resources

(LMD), Computer Operations (LMO), and Training (LMR) for

the development 3f software systems. Once the system is

operational, it is "turned-over" to the us' r of the system,

i.e., AFLC/LO (Ref 48).

Software Life Cycle Implications

AFLC recognizes that by implementing a SQA program it

will be enhancing the software development by imposing a QA

discipline on the software life cyclo. The Software

Development Life Cycle (SDLC), as described in Dod Standa.Ird

7935.1-S, provides for the structured implementation of

software from conceptualization through operations

(Ref 47).

Represented in Figure 1, the SDLC begins with the

conceptualization or Requiremeits Analysis. This phase

2

a..

determines "what" the software system is to do. Next the

Design phase describes "how" the requirements will be met.

Following this is the Programming (Coding) and Checkout

phase, which entails the greatest amount of manpower and

funds. While the test phase concludes the normal

development cycle, one should realize that with software

the development continues in the Operations and Maintenance

phase because of debugging and changes in the user

requirements (Ref 11).

[̂ .lys is l~ sChecko ~ IaL__nn

Figure 1.
Software Developsnt Life Cycle (SDLC)

The arrows in Figure 1 indicate the possible paths of

software development. They demonstrate that tihe

development phases are iterative in natur,,. The iterations

show that the identification of proLlems causes tho

development effort to "fall-back" on to earlier phases in

order to correct the problem. One should b awar- that

there are associated costs for such probloms or -rrors.

Figure 2 reveals that the -arlicr an error is mado, tho}

later it will be detected in the ,SD[C (Re 14). T'hus, it

costs more to correct errors mad- durinq th, r-qkir-nonrt s

analysis than it does for orrors inad. in r -oli.jn hc.i ,

later detect ion of an e-rror lat ',; I I 1" 1i)", of,

*mo

ANALYSISERRORS INTRODUCED

CODE

UNIT
TESTING

INTEGRATION

TESTING___________________

ACCEPTANCE ERROR DETECTED
TESTING

AND
SYSTEM USE

I Figure 2.

A Software Development Problem

4

additional time and resources. Furthermore, extensive

analysis of error data by TRW reveals that most errors are

design and requirements errors, as opposed to coding

errors (Ref 78).

With these facts in mind, it would appear logical to

assume that any tool that can improve the quality of the

requirements analysis would have a significant impact on

the overall development cost. Moreover, it follows that

there would be a genuine attempt to find ways of improving

quality, hence reducing the overall costs by saving time

and resources. However, as of this date, AFLC uses no

quality measurement tools during the requirements analysis

or design phase. The consequence of this vacuum created by

the lack of up-front measurement has been the delivery of

software systems that must be modified in order to meet

user needs (Ref 38).

AFLC's Software Development Efforts

Efforts to develop quality assurance programs for

software systems at AFLC began in 1974 with the Advance

Logistics System (ALS). This was designed to integrate the

logistic software systems. However, because ALS was late

in being developed at a cost that had far exceeded its

budgeted amount, AFLC was forced to firm up the software

management discipline.

The likely candidate to help accomplish this task was

Configuration Management (CM) because it had been used for

years in the development of weapons systems and, as a

5
1I

- - - - -- - - -

result, people thought that it could be transferred to

software development. A "get-well" plan was implemented

which brought in CM people from the weapons SPOs (System

Program Office) to create an ALS SPO (Ref 42).

In July 1975 the new ALS SPO developed AFLCR 300-3, a

document which at that time was viewed as being

Ron-the-cutting-edge" for software configuration

management. Unfortunately, the new regulation was

developed too late to improve the development management of

ALS; so in December 1975 Congress killed ALS. As a result,

the development of software configuration management was

halted for several years after that (Ref 42).

In January 1978 AFR 300-15 (built on AFLCR 300-3 and

AFDSDC 300-8) was published (Ref 47). Although this

document includes a one page chapter entitled "Quality

Assurance", it falls short of insuring a quality software

product. While the regulation says that quality assurance

will exist, it fails to specify what such a program should

involve. This is evidenced by the fact that AFR 300-15,

like the other regulations that govern software

development, makes no attempt to define or measure quality.

Within AFLC/LM, quality assurance is supposed to be a

A function within Configuration Management, but in reality,

"CM fails to provide software QA." This sentiment of

"having QA" contributes to a lack of urgency. Moreover,

because the CM people are more hardware oriented, they lack

the skills for software QA (Ref 42). In other words,

6

weapons systems (hardware) CM has not readily transferred

to software developowit.

Failures of CurrentDevelopment Efforts

Another factor which inhibits an effective Quality

Assurance effort under the current AFLC/LM structure is the

dependence between Configuration Management and Program

Management (Ref 42). Ray Rubey from SOFTEC calls this

"Cognitive Dissonance" because individuals are asking

people to report where they went wrong when they truly

believe that they did a good job (Ref 44). In other words,

SQA should be an independent effort by a functionally

separate team (Ref 52). Moreover, a formal SQA program

would indicate commitment by management to the requirements

for a quality operation, and it would make SQA a visible

and identifiable function (Ref 38).

In November 1981, at a symposium at AFIT, Ray Rubey

identified some of the reasons why SQA can fail (Rer 44).

Four of the five reasons would seem to directly apply to

AFLC/LM in software systems development eftort:

1. QA is not included in the budget. Although a

"flavor" of QA is expected from CM, no dollars are directly

allocated for SQA (Refs 38, 42). Quality Assurance costs

include QA personnel salaries, administrative costs,

computer time, etc. If resources or programs are not

budgeted at the beginning of a project, it is difficult to

expect that funds will later be found for them.

2. Inexperienced or incompetent people are on QA

7

teams. AFLC/LM personnel admitted that CM people are not

trained in SQA (Ref 42).

3. QA does not start when the development starts.

Currently, even CM reviews do not occur until after the

requirements are specified, and there is no SQA effort ir

AFLC/LM (Refs 38, 89).

4. QA and system objectives are unknown. CM does not

even address the basic question -- What do we mean bl

quality? The objectives and quality factors are not

identified (Ref 38). AFR 300-15 does state that RQA

policies and procedures must be set up which tell how to

conduct configuration audits, and how to make sure that the

CPCI meets ADP standards..." Yet if the policies,

procedures, and standards fail to mention anything abou:

measuring quality (which i:; the case), then simply

complying with them also fails to insure quality software.

Richard Woodward in AFLC/LM, the sponsor of this research,

has indicated that CM fails to provide standards for

acceptance and that under CM there is no wa to determine

the quality of the software system. Clearly, "AFLC

currently has no command level Quality Assurance program

for software" (Ref 38).

Currently, there is a lack of clear evidence that SQA

is a reality, despite the attempt of AFR 300-15 to claim QA

is in place. Indeed, defenders can point to phrases that

imply standards must be followed, but which standards are

to be followed? In addition to shortcomings alroady

8

pointed out, APR 300-15 provides no criteria for

determining which standards, if any, should be used.

Personnel in AFLC/LM noted that there is no directive that

sets one standard for software development for AFLC/Lk --

there are several different standards, and none are

quantified (Ref 48).

Although Configuration Management has failed to provide

the standards for acceptance, and hence failed to quantify

quality, it does provide the framework on which a SQA

program can be built because it establishes the structure

necessary to enforce compliance with procedures. Using

DODD 7935.1-S, APR 300-12, and AFR 300-15, AFLC/LME

described the SDLC, as depicted in Figure 3, to provide a

structured model for software development

(Refs 46, 47, 85). Because this structure governs the

software development environment for AFLC/LM, it is

presented in more detail in Appendix F which provides a

listing of all deliverable documents for each milestone

(review) in the SDLC (Ref 89). A glossary of terms for the

software Configuration Management follows in Appendix G

- which provides a description of each review and a

A: definition for CM terms.

Current SQA Efforts

With a development structure firmly in place, AFLC/LM

has begun to define requirements for a Software Quality

Assurance Program. A formal SQA program would indicate

tcommitment by management to the requirements for a quality

9

ft I j
/

I

f-I I

I'

'4a
Va t

/ I* I
0

/ *1"4

~ii
C,

~II ~ i
I

-~,

operation. It would also make SQA a visible/identifiable

function to management and to the development

staff (Ref 38). Initially, three alternatives to the SQA

program were proposed by AFLC/LM.

The first alternative, called the "Broad Program,"

would have used R quality audit approach applied to all

systems at varying levels. At the higher level would be a

consideration of compliance with DoD/Air Force directives

and a checking for effective operational interface. The

lower level would get more into specifics, evaluating

performance against designated standards and requirements.

The second alternative, labeled "Main Projects," would

have implemented a quality assurance program that would

subject major projects to tailored evaluations or

considerations. Evaluations then could be made that were

specific to each particular system. Systems not classified

as major would be subjected to a less vigorous review or

audit. Although this alternative would be the least costly

of the three alternatives, it would probably also be the

least effective.

The third alternative, called the "Cradle to Grave"

A quality program implies QA evaluations, such as checklists

and standards, throughout the life cycle of all systems.

It is designed to involve users of the system, require

documenting of all significant actions, promise error

tracking and auditing capabilities, and include quality

checks for systems interfacing with the basic system. The

I-i

plan states that documentation and related actions for each

phase must be evaluated and accepted by a QA task group

before proceeding to the next phase and before releasing

the system for implementation.

Because the third alternative includes projects of all

sizes and would operate throughout the total life cycle of

software development, it will be adopted as AFLC's Software

Quality Assurance Program (Ref 38).

One of the basic requirements for the success of this

SQA program is that a "carefully prepared acceptance

checklist should be developed." (Ref 38) To implement such

a checklist, tools are needed to quantify the quality of

the software under development. Fortunately, these tools

are now available through certain sectors of industry.

Measuring Software Quality

Recognizing the importance of such tools, DoD has

recently started funding efforts which are attempting to

adapt industrial research to military requirements. This

research has resulted in the development and evaluation of

a number of metrics purporting to measure various

qualitative attributes of software. These metrics, once

established, can provide quantifiable measures for software

quality (Ref 23).

The metric measurements are derived from implie!d

standards which are accepted as being necessary for quality

software. Basically, the metrics are a check on the

development procedures to determine if certain standards

12

were incorporated (regardless if they were stated or not).

Justitication for SQA

The need for software quality assurance has been

demonstrated in a Governmental Accounting Office (GAO)

report which reviewed nine federal software projects

totaling $6.75 million. This total included:

$3.20 M of software that was delivered, but never used,
$1.95 M of software that was paid for, but not delivered,
$1.30 M of software that was used temporarily, then
abandoned,

$.20 M of software that was used only after changes
were made,

$.10 M of software that was used as it was
delivered (Ref 40).

In other words, less than 1.5% of the total funds spent on

software actually produced software Products that could be

used by the user as delivered. The report suggested that

if measurable standards were applied during the systems

development life cycle, then the user of the software could

be better assured of receiving a usable software system.

In recent years, symptoms indicating the existence of

an inadequate quality assurance program have been

encountered in the development of large scale systems.

These symptoms include: cost and schedule overruns, poor

performance of the systems once they are delivered, high

maintenance costs, lack of reliability, and a high degree

of system sensitivity to changes in requirements. Examples

of these situations have been well documented in the

literature (Refs 1,2,3,4,5,6,7). In short, government and

industry sources have identified the enforcement of

13

quantifiable standards throughout the system development

life cycle as one key to delivering quality software

systems.

Conceptualization of the Decision-Making Process

In order to understand why current software systems

development efforts have failed to enforce measurable

standards, one has to have an adequate conceptualization of

the decision-making process which is involved in creating a

complete software system. In Figure 4, the software

development process is represented as an open system with

relationships between its own internal organization and the

environment (Ref 49).

During the software system development effort for

AFLC/LM, Configuration Management provides the structure

for the three subqystems: Scanning, Organizing, and

Decision. Conceptually, the actions of AFLC's system

development organization, which are the outputs of the

decision subsystem, should not be based on the outputs of

the scanning subsystem, but rather upon the outputs of an

intelligence (organizing) subsystem which would act as an

evaluator of the receptor or scanning subsystem. Data

received by the scanning (receptor) system needs to be

r eventually fed into the decision system where it can be

utilized for problem-solving purposes (Ref 49).

It is the data which is currently collected that makes

the eventual decisions ineffective. The current scanning

(receptor) data is the result of checking for compliance

14

PRJC MANAGEMENT

Seek Scanning

USER F

ENVIRONMENT___

Organizing
Syste

Decision
System

Continue Scanning

Manipulate and/or Adopt

P Figure 4.

The Software Development-Environment Interaction Systemn

1.5

with outputs, i.e., to check if source documents are being

produced to monitor the software development; yet the

needed information should check the quality of that

documentation. AFLC personnel noted that although CM

insures that the documents are produced, that there is no

check to insure the quality of the document (Ref 48).

A software QA program can provide the tools, such as

Software Metrics, which would indicate the quality of the

documentation being produced. This is precisely why the

data collected by such a SQA program would be inherently

different from that collected under CM. Such metric data

would indicate the quality of the documentation rather than

just its existence. By using Software Metrics the

organizing (intelligence) subsystem would be able to relate

the data into meaningful measures which are then passed on

to the decision subsystem. This model of the

decision-making process of the software development effort

will be used in Chapter 5 to demonstrate how software

metrics can be applied by AFLC/LM.

Front-End Planning Through Configuration Management

Additionally, Configuration Management provides a

planning structure to the development effort. Tn the

development of a software system, AFLC needs to specify a

system's requirements, and then be able to determine

whether those system requirements are being satibfied as

the software system evolves. The parameters of the

specification center around the technical definition of the

16

application and the software role within the overall

system. CM aids in this front-end planning and could

greatly increase the software management effort if it

incorporated a definition of quality and the system

objectives (Ref 42).

While the application functions, cost, and schedule

aspects of development can be objectively defined,

measured, and assessed throughout the development of the

system, the quality desired has historically been definable

only in subjective terms. This occurs because there are no

quantifiable criteria against which to judge the quality of

the software until the system is under operational

conditions (Ref 38). Current scheduling methods, such as

PERT/CPM or GANTT charts tell nothing about the quality of

the system. Rather, they provide information about the

state of existence, i.e., is the software completed by a

certain time within a specified cost (Refs 43, 45).

A Framework for Software Quality Assessment

Fortunately, there is a framework for software quality

metrics that can provide the measurement tools needed to

quantitatively assess software quality. This framework has

. evolved over a number of years. Boehm traces some of the

previous work contributing to this evolution (Ref 19). The

work dates back to a paper by Ray Rubey and R. Hart-wick in

1968 which first introduced the concept of software metrics

(Ref 20). Later studies established a more formal

conceptual framework (Refs 21, 22).

17

The catalyst that set off this attempt to quantify

attributes of software was the introduction of more formal

and structured software design, implementation, and review

techniques -- a framework which was conducive to the

quantitative measurement of software quality (Ref 31).

Figure 5 illustrates the hierarchical nature of this

framework.

At the highest level, the major aspects (factors) of

software quality are identified. The user is the program

manager or the customer of the software system. The user

requires a defined set of factors in order to identify what

qualities are desired in the software system being

developed. To satisfy this use, the definitions of the

factors must lend themselves to quantification

(measurement) that is meaningful to users.

The approach taken to satisfy these requirements is to

evaluate how a program manager views the end product of a

-. software development. The orientations or viewpoints

identified relate to life cycle activities involving the

software product (Ref 18).

Underlying these user-oriented quality factors is a set

; of attributes (criterion) which, if present in the

software, provide the characteristics represented by the

factors. For each factor then, a set of criteria has been

established and defined (Ref 16).

A key point in the approach is that the measurements

are to be taken during the development effort. These

.....18

FACTOR

CRTRO CRITERION CRITERION

MERCMETRIC METRIC

Figure 5.

Software Quality Framework

1 9

measurements are not post-implementation assessments of

software quality. Their purpose is to provide an

indication of the progression toward a desired level of

quality. The set of attributes, or criteria, established

for each quality factor then represents attributes which

can be measured during the software development (Ref 17).

The framework provides a mechanism for a project

manager to identify what qualities are important. These

qualities are attributes of the software in addition to its

functional correctness and performance which have life

cycle implications (Ref 28). Such factors as reliability

and maintainability have been shown in recent years to have

significant life cycle cost impacts (Ref 24).

Background Abstract

Because of the significant cost and schedule overruns,

DoD has tried to place an emphasis on QA programs through

Military Standards, yet AFLC has been unable to incorporate

these in the development of its conventional software

systems. The quantitative nature of software metrics

provides the measurement tool needed in a SQA program to

determine the qualitative attributes of software. By

VI having a tool by which to objectively measure software
-*"

quality, AFLC/LM will be able to enhance the

controllability of software development effort by

quantifying the information used in SDLC decision-making.

In summary, AFLC currently has no quantifiable measures

for software quality. Even thouigh they have tried and are

20

continuing to try to define programs to develop quality

software, AFLC/LM personnel have not been able to implement

the measurement tools that can provide quantifiable

quality (Ref 38).

Problem Statement

AFLC needs a software quality assurance (SQA) program

that can quantitatively measure the quality of computer

software during all stages of its development. Current

attempts to establish such a program have been frustrated

by program management's inability to define the critical

information needed to operationalize such a program.

Research Objectives

The overall objective of this study is to provide

recommended guidelines to AFLC/LM concerning ways to

objectively specify and quantitatively measure the desired

amount of quality in a computer software system during all

stages of its development. To accomplish this, the

following four goals had to be attained:

1. Determine which measurement tools and techniques

should be used by AFLC/LM when it establishes its Software

Quality Assurance (SQA) program.

2. Develop a model of the decision-making process of

the software system development effort that incorporates

the application of Software Quality Metrics and which

illustrates the feasibility of implementing a

quantitatively oriented SQA program at AFLC/LM.

21

__________________...'------ .. . --

3. Demonstrate how the SQM concepts can be applied to

existing systems at AFLC by developing checklists for

system developers.

4. Use the information generated from this research to

help AFLC/LM formulate guidelines concerning ways that

Software Quality Metrics can be integrated into a

command-wide SQA program.

Scope of Research

This research effort concentrated on recommending

guidelines for a system to control and monitor the software

development process within AFLC.

An attempt has been made to identify the qualitj

metrics and information requirements of an effective

software management program. Since reliability and

maintainability were identified as the two most critical

factors in establishing a SQA program for AFLC (because

AFLC must rely on the software systems for several years),

this thesis indicates how a software system can be measured

to insure reliability and maintainability. It is

anticipated that by enhancing AFLC's ability to measure the

reliability and maintainability attributes of software

/, quality that a marked improvement in the control of

software development will occur.

AFLC/LM, the sponsor of this research effort, has been

the central point for gathering data about AFLC's current

and past attempts at quality assurance. Data used in

discussing the metrics was obtained from the Rome Air

22

Development Center (RADC) at Griffis AFB, NY. The data was

taken from USAF systems that are similar to those at AFLC.

Additionally, the metric worksheets have been applied

to G072A, a subsystem of the Maintenance Management Systems

Improvement Project (MMSIP) to determine the changes needed

by APLC to be able to use the software metrics.

Because most of AFLC's software development is a

product of win-house* projects, and because AFLC/LM is the

OPR for conventional computer systems (not embedded

systems), this research will provide recommendations to

AFLC/LM.

Chapter II provides an overview of Software Quality

Metrics which can provide the quantification needed to

measure standards in a SQA program.

23

CHAPTER II

SOFTWARE QUALITY METRICS: AN OVERVIEW

Quality Measurement in Perspective

The evolution during the past decade of modern

programming practices, structured development techniques

and methodologies, and requirements for effective

documentation, has increased the feasibility of effective

measurement of software quality (Ref 16).

However, before the potential of measurement techniques

could be realized, a framework or model of software quality

had to be constructed. An established model, which at one

level provides a user or management-oriented view of

quality, is used to establish software quality requirements

for a specific application (Ref 17).

The actual measurement of software quality is

accomplished by applying software metrics to the

documentation and source code produced during the SDLC.

A These measurements are part of the established model of

software quality, and through that model they can be

related to various user-oriented aspects of software

quality.

24

Categories of Metrics

The metrics can be classified according to three

categories: anomaly-detecting, predictive, and acceptance.

Anomaly-detecting metrics identify deficiencies in

documentation or source code. These deficiencies usually

are corrected to improve the quality of the software

product. Standards enforcement is a form of

anomaly-detecting metrics.

Predictive metrics are measurements of the logic of the

design and implementation. These measurements are

concerned with form, structure, density, and complexity

type attributes. They provide an indication of the quality

that will be achieved in the end product, based on the

nature of the application, and design and implementation
strategies.

Acceptance metrics are measurements that are applied to

the end product to assess the final compliance with

requirements. Tests are a form of acceptance-type

measurements (Ref 23).

Complementary Use of Metrics with SQA

The measurement concepts of software metrics complement

current Quality Assurance and testing practices. They are

not a replacement for any current techniques utilized in

normal QA programs. Table I summarizes how software

metrics complement QA activities by mapping the impacts of

software quality metrics onto functions of a SQA

program (Ref 16). For example, a major objective of QA is

25

Table I
How Software Metrics Complement Quality Assurance

QUALITY ASSURANCE IMPACT OF SOFTWARE QUALITY
PROGRAM REQUIREMENTS METRIC CONCEPTS

Assures conformance with Expands software
requiremuts requirements

- Identify softvare Expands deficiency detection
deficiencies with some metrics designed

specially for anomaly-detection

- Provide configuration Provides measures to determine
smanagemant the adequacy of standards in use

by quantifying the quality of
products which comply with current
procedures

- Conduct tests Assists in evaluation of
other qualities

- Provide library controls Can provide measurements to
determine the adequacy of

standards in use

Review computer program Provides metrics that can predict
design end-product capabilities

- Assure software documenta- Provides metrics that assist in
tion requirement evaluation of documentation as
conformance as well as code

- Conduct reviews and audits Provides procedures for applying
metrics in the form of
worksheets; thus, formalizing

the inspection process

- Provide tools/techniques/ Expanded state-of-the-art tools,

methodology for quality techniques, and methodolbgies
assurance

- Provide subcontractor Can provide measurements on
control which to base acceptance of

deliveries

26

to assure conformance with user/customer requirements. The

software quality metric concepts provide a methodology for

the user/customer to specify life-cycle-oriented quality

requirements, usually not considered, and a mechanism for

measuring if those requirements have been attained.

A function usually performed by quality assurance

personnel is a review/audit of software products produced

during a software development. The software metrics add

formality and quantification to these document and code

reviews (Ref 28).

More importantly, the framework provides a means of

quantitatively assessing how well the development is

processing relative to the quality goals established. This

augments current techniques used by quality assurance

personnel which may range from only testing to testing and

standards enforcement, participation in walkthroughs, etc.

Testing is usually oriented toward correctness,

reliability, and performance. The metrics assist in the

evaluation of other quality factors like maintainability,

portability, and flexibility (Ref 23). The periodic

application of the metrics during a large-scale software

development effort can be viewed as a control system.

Snapshot assessments are generated and feedback to the

program management is provided with respect to their

specified requirements for quality, thereby allowing

corrective action, calibration, redirection, or

identification of areas to be emphasized later in the

27

development, i.e., such as during testing.

The metrics may be in the form of a checklist used to

"grade" a document produced during the development of

specific attributes such as the number of paths through a

module or the number of unconditional branches (Ref 23).

In short, Software Quality Metrics provide the

quantification needed in a SQA program.

Comparison of Metrics, Inspections, and Walk-Throughs

Software metrics offer more quantification of software

quality than other SQA tools and techniques. Software

metrics, code inspections, and structured walk-throughs

have all been developed to aid the SQA function. Metrics

are used throughout the SDLC and quantitatively measure the

quality of the software as It is developed (Ref 52). Code

inspection techniques are primarily for finding errors in

design and code (Ref 29). The primary purpose of

structured walk-throughs is to subject the design or code

to a critical evaluation (Ref 30).

Currently AFLC uses code inspections and structured

walk-throughs. Although the level of usage for thpse

techniques varies for each project, these techniques fail

to quantify quality even when both are used to their

fullest potential. Table II exposes the gaps in current QA

techniques by comparing the properties of Code Inspection,

Structured Walk-Throughs, to Software Quality

Metrics (Ref 23).

Although Code Inspection compares favorably to

28

TABLE %I

Comparison of Key properties of Inspections and Walk-Through. and Metrics

Prprtie inspc tio Iialk-Thru metric's

1. Formal Moderator Training yen No No

2. Definite participant Roles yes No Yes

3. Wb. "Drives" The Inap, or Moderator Owiner of Quali!:y
Walk-Thru Material Auaur.ince

(Designer or Cron p
Coder

4. Use "damv to Find Errors"t
Chckliste yes No Yes

5. Use Distribution of Error
Types to Look For Yes No Yes

6. Follow-Up to Reduce Bad Fixes Yes No Yes

7. Loe Future Errors Because of
Detailed Error Feedback to yes Incidental Yes
individual Programer

3. improve Imepaction Efficiency
From Analysis of Results Yes NO Yes

9. Analysis of Data Process
Problems Improvement Yes No Yes

10. Lifocycle Impact and
Applicability? Partial No Yes

11. Quantification of Results
For Comparative Purposes No No Yes

12. Prediction of Quality Level
Based on Current Analysis Methodology
and Figure of Merit? No No Exists

13. Formal Definition of Quality
(Factors, Attributes)? No No Yes

14. Formal Validation of Concept Partial (lack
Carried out? of quantifiable

results makes it
difficult to No Yes4 statistically
validate)

15. formal Methodology for
Application Developed? Yes No0Ye

16. Applicable in Different
Environspnts Yes Yes Yes8

29

Structured Walk-Throughs, it fails to provide

quantification of software quality. The quantification of

quality is the most favorable attribute of Software Quality

Metrics in addition to it matching the other properties of

Code Inspection and Structured Walk-Throughs.

Software metrics have both anomaly-detecting and

predictive characteristics, in addition to those which may

be classified as acceptance metrics (Ref 52). Code

inspections and walk-throughs are oriented towards anomaly

detection. They are techniques used by development teams;

yet metrics not only can be used by the development team,

but also can be used by the project manager as acceptance

criteria (Ref 23).

Identifying Software Quality Requirements

The vehicle for establishing software quality

requirements is the hierarchical model of software quality

(see Figure 5, Chapter I) defined in "A Framework for the

Measurement of Software Quality", Proceedings of the ACM

Software Quality Assurance Workshop in

November 1978 (Ref 18).

4 The procedures for establishing the quality

requirements for a particular software system utilize this

model and will be described as a three level approach,

which are the levels corresponding to the hierarchical

levels of the software quality model. The basic tool to be

used in identifying the important quality factors will be

the Software Quality Requirements Survey form shown in

30

Table III. The formal definitions of each of the eleven

quality factors are provided on that form (Ref 17).

It is recommended that a briefing be provided to the

decision makers using the tables and figures, which will be

described later, to solicit their responses to the survey.

In order to determine the quality factors, the decision

makers should consider the system characteristics as shown

in Table IV (Ref 23). In other words, if the software

system is to have a long life cycle, the Quality Factors

that must be considered are Maintainability, Flexibility,

and Portability.

Table V shows that the eleven quality factors, which

are identified on the survey, can be grouped according to

three life cycle activities associated with a delivered

software product. These three activities are product

operation, product revisien, and product

transition (Ref 23). The cost to implement versus life

cycle cost reduction relationship exists for each quality

factor. The benefit versus cost-to-provide ratio for each

factor is rated as high, medium, or low in the right hand

column of Table V. This relationship and the life cycle

implications of the quality factors should be considered

when selecting the important factors for a specific system.

By this point, a tentative list of quality factors

* should be produced. The next step is to consider the

interrelationships among the factors selected. Tal le VI

and Table VII can be used as a guide for determining the

31

Table III. Software Quality Requirements Survey Form

1. The 11 quality factors listed below have been isolated from the current
literature. They are not ineant to be exhaustive, but to reflect what is
currently thought to be important. Please indicate whether you consider
each factor to be Very Important (VI), Important (I), Somewhat Important (SI),
or Not Important (NI) as design goals in the system you are currently working
on.

RESPONSE FACTORS DEFINITION

CORRICTESS Extent to which a o.onrm satisfies it specifica-

tioni and fulfills the oSlfes mision objectives.

- tELJ81L L .TY E.tent to which a p"oeraw can be expected to per.

Sorm Its Intended function with rquired preClsion.

EFF1 IC ST rho mount of :amouting esources and code
requiroo by a Prqrm to perform a function.

_____________"NxTfLtent to which accesS to Software O- data by

inauthorized Persons can be controlled.

, USASLITY Effort required to learn. operate. prepare input.
and Interpret output of a program.

,__.,____NA!NTAINRMLITY Effort required to locate and fix an error In an
ooeratlnal I prao'rw.

TESTABILITY Effort required to test a Drorem to Insure it

performs its intended function.

L'.EXIBILZITY Effort required to modify an operational proqorm.
_ _ R'ABILITY Effort rtquired to transfer a program fvw one

hardwrare configuration andlor software system

environ ent to anot er.

REUSABILITY Extent to which a prorm can be *Jse4 In other

Applications - related to the packaging and
scope of the functiems that prorms perform.

_ TEROPERASULlTY Effort required to couple one system with

another.

2. What type(s) of application are you currently involved in?

3. Are you currently in:

_ _- 1. Development phase

2. Operations/Maintenance phase

4. Please indicate the title which most closely describes your positinn.

_ _ _ 1. Program Manager

- 2. Technical Consultant

3. Systems Analyst

_ _ _ _ _ 4. Other (please specify)

32

Tab le IV

System Characteristics and Related Quality Factors

CHARACTERISTICS QUALITY FACTORS

- If human lives are affected Reliability

- Long life cycle Maintainability
Flexibility
Portability

Real time application Efficiency
Reliability
Correctness

- On-board computer E ff ic ienc y
application Reliability

Correctness

- Processes classified Integrity

in format ion

- Interrelated systems Interoperability

33

411
ca

UJ39O m OLD

40 Ilm - 4.'

I--

LA..
ii 0

00 =

2-1-.

IA IMP

Lai c 04 b

CICL

- P

060

4.'L ox
oK K l<<<1c<'<11<6

of co I-

IX Ifl 4o.W

a. a

a ~ZJ~J'Q34

Table V1

Relationships Between Software Quality Factors

4W

FACTORS %

CORRECTNESS%

EFFICIENCY %

INTEGRITY _

____ _ O o o 4,
USABILITY 0 0 0 4

MAN,4TAINABILITY 0 0 0@ 0
TESTABILITY 0 0 0 , 0 0 A-

FLEXIBILITY 0000000 0

PORTABILITY 0 0

REUSABILITY 0,00 0 0

INTEROPERABILITY ,
LEGEND

If a high degree of quality is present for factor,
what degree of quality is expected for the other:

0 - High O = Low

Blank = No relationship or application dependent

35I

13

Table VII

SOME TRADEOFFS BETWEEN
SOFTWARE QUALITY CHARACTERISTICS

INTEGRITY VS EFFICIENCY--The additional code and processing required
to control the access of the software or data usually lengthen run
time and require additional storage.

USABILITY VS EFFICIENCY--The additional code and processing required
to ease an operator's task or provide more usable output usually
lengthen run time and require additional storage.

MAINTAINABILITY VS EFFICIENCY--Optimized code, incorporating intricate
coding techniques and direct code, always provides problems to the
maintainer. Using modular, instrumented, and well-commented high
level code to increase the maintainability of a system usually
increases overhead, resulting in less efficient operation.

TESTABILITY VS EFFICIENCY--The above discussion applies to testing.

PORTABILITY VS EFFICIENCY--The use of direct code or optimized soft-
ware or utilities decreases the portability of the system.

FLEXIBILITY VS EFFICIENCY--The generality required for a flexible
system increases overhead and decreases the efficiency of the system.

REUSABILITY VS EFFICIENCY--The above discussion applies to
reusabi1ity.

INTEROPERABILITY VS EFFICIENCY--Again the added overhead for con-
version from standard protocol and standard data representations,
and the use of interface modules decreases the operating efficiency
of the system.

FLEXIBILITY VS INTEGRITY--Flexibility requires very general and
flexible data structures. This increases the data security problem.

REUSABILITY VS INTEGRITY--As in the above discussion, the generality
required by reusable software provides severe protection problems.

. INTEROPERABILITY VS INTEGRITY--Coupled systems allow for more

- avenues of access and different users who can access the systpn. tho
potential for accidental access of sensitive data is increased as
well as the opportunities for deliberate access. Often, coupled

.* 4 systems share data or software which compounds the spcurify
problems as well.

36

b.

relationships between the quality factors (Ref 28). Some

factors are synergistic while others conflict. The impact

on conflicting factors is that the cost to implement will

increase. This will lower the benefit-to-cost ratio. For

example, there is a very low relationship between

maintainability and efficiency. It would be unrealistic or

very costly for a user to expect a software system to be

highly maintainable and highly efficient. An efficient

system uses optimized code and incorporates intricate

coding techniques; as such, it will always provide problems

to the maintainer. On the other hand, a highly

maintainable system uses modular and well-commented high

level code which increases the system overhead, resulting

in less efficient operation.

Now a list of quality factors that are considered to be

important for one particular system should be compiled.

The list should be organized in order of importance. The

definitions of the factors chosen should be included with

this last list. The rationale for the selection of factors

must be documented.

The next level of identifying the quality requirements

involves proceeding from the user-oriented quality factors

to the software-oriented criteria. Sets of criteria, which

are attributes of the software, are related to the various

factors by definition. Their identification is automatic

and represents a more detailed specification of the quality

requirements. Table VIII should be used to identify the

37

W A~) .J L)LL

LUI LU LLU 2! E Z
2: Z L LU L

h-I Li LU m&~

tLLJ 0D.-' o- .LjU LJLiJ LLI LLS c .

106 0. 0- 0LLJ V)LLJ V) L&J C) X

I= Ix _i (A (a'ii (A e.L (A J -4 cc 4 CD

= L49 . CL I- U JL U- zU - =D C

00

u
to

LiAJ

0V dt -i W Cl.L

4J (- LU.

to Li (JI

U- LU. V)09

u- U- (DAL

W *- J(ui ULLJ >- U--4 L. >- (A >-

=) =-L)J LL = - L- C) = I M- >- L.

0i UJ . UiJi C:) UJ - (Al-cA j o Z: V.~)

w. co w)~0 0CfJ0 LJU - E Ii
V) L" CDL) OLa ULm tni I)c

o : 0 00- ~0-) -1LL -g 0.-OL
wA (A 1) Li.JL) V) 0- ~ 9 u1* w)aL-) Vj

Lii CD ix CD, L)wC) >C

0 wi C) u :) 7-V

C)..iiLL-J

U- F-0 ~ LLi

38

software attributes associated with the chosen critical

quality factors (Ref 17). For example, if the dezired

management-oriented quality factors of the system are

Reliability and Maintainability, then the software must

exhibit the following criteria: Consistency and Simplicity

(both common to Reliability and Maintainability) as well as

Accuracy and Error Tolerance (attributes of Reliability),

and Conciseness, Modularity and Self-Descriptiveness

(attributes of Maintainability).

The last level, which is the most detailed and

quantified, requires precise statements of the level of

quality that will be acceptable for the software product.

Currently, the underlying mathematical relationships

that allow measurement at this level of precision do not

exist for all the quality factors. The relationships exist

for reliability, maintainability, portability, and

flexibility (Ref 28). The mechanism for making the precise

statement for any quality factor is a rating of the factor.

The underlying basis for the ratings is the effort or costs

required to perform a function such as to correct or modify

the design or program (Ref 23). For example, rating for

maintainability might be that the average time to fix a

problem should be five man-days or that 90% of the problem

fixes should take less than six man-days. This rating

would be specified as a quality requirement. To comply

with this specification, thp oftware would havP to exhibit

characteristics which, when present, give an indication

39

that the software will perform to this rating, i.e., be

fixed in less than six man-days if a problem should occur.

These characteristics are measured by metrics which are

inserted into a methematical relationship to obtain the

predicted rating.

In order to choose ratings such as the two mentioned

above, data must be available which allows the decision

maker to know what is a "good rating" or perhaps what is

the industry average. Currently there is generally a lack

of good historical data to establish these expected levels

of operations and maintenance performance for software.

There are significant efforts underway to compile

historical data and derive the associated performance

statistics (Ref 9). Individual software development

organizations should attempt to compile historical data for

their particular environment.

The Automated Measurement Tool (AMT), which is

discussed in Chapter IV, has been created to collect this

data. It is designed to be both language and machine

independent (Ref 18).

The vehicle for applying the software quality metrics

are the metric worksheets contained at the end of this

report in Appendix A. Figure 6 illustrates the timing of

when each worksheet is to be applied during the

SDLC (Ref 23). The procedure is to take the available

documentation/source code, apply the appropriate worksheet,

and translate the measurements to metric scores. For

40

DEVELOPMENT PHASES

REQUIREMENTS TSANALYSIS DESIGN IMPLEMENTATION TEST

ANALSISAND]
INTEGRATION

REQUIREMENTS
SPEC

METRIC PRELIMINARY
WORKSHEET DESIGN
t] SPEC

USER'S MANUAL
(DRAFT)

I DETAILED
DESIGN

METRIC SPEC
WORKSHEET (BUILD TO) SOURCE
0 2a TEST CODE

PLANAND DETAILED
PROCEDURES DESIGN TEST

SPEC RESULTS

I(BU LT TO)
USER'S MANUAL(FINAL)

METRIC
WORKSHEET

2b

METRIC METRIC WORKSHEET

WORKSHEET # 3
2a
UPAT METRIC WORKSHEET METRIC WORKSHFT

2b UPDATE # 2a UPDATE

Figure 6.

Application of the Metric Worksheets

41

example, worksheet #2a would be used during the design

phase of a system development effort. This worksheet

should be able to collect the needed system level

information from the Preliminary Design Specifications and
the Draft of the Users Manual. Then the AMT would be

updated with this information, and then automatically

compute the metric scores.

Techniques for Applying Metrics

The metrics can be applied different ways. The first

technique for applying the metrics is by formal inspection.

The formal inspection is performed by personnel of an

organization independent of the development organization

(the acquisition office, an independent quality assurance

group, or an independent contractor). The worksheets are

applied to delivered products at scheduled times and the

results are formally reported.

The second technique is to utilize the worksheets

during structured design and code walk-throughs held by the

development team. A specific participant of the

walk-through can be designated for applying the worksheets

and reporting any deficiencies. During the walk-through a

representative of the quality assurance organization can

participate in the walk-through with the purpose of taking

the measurements of the design or code.

L The last technique is for the development team to use

the worksheets as guidelines, self-evaluations or in a peer

review mode to enhance the quality of the products they

42

produce.

These Software Quality Metrics are now sufficiently

developed to use within a SQA program. The AMT reduces the

requirement for human resources by automating much of the

collection of data.

Chapter III presents the methods used to derive the

information needed to make recommendations concerning the

development of AFLC/LM's Software Quality Assurance

Program. It discusses the research required to demonstrate

the feasibility of incorporating Software Quality Metrics

into AFLC's SQA program.

43

CHAPTER III

RESEARCH METHODOLOGY

The overall objective of this thesis is to provide

guidelines to AFLC/LM concerning the way Software Quality

Metrics should be integrated into its Software Quality

Assurance program. This chapter will discuss the

methodology used to attain this objective and indicate how

the four research goals specified in Chapter I were

achieved.

Establishing the Framework

In order to accomplish the first goal: To determine

which measurement tools and techniques should be used to

support a SQA program, a framework for analysis was

established by reviewing current Software Quality Assurance

programs throughout DoD and the industry. This provide! a

baseline to determine how software quality has ho- en

. assessed.

Since it was critical to have a broad source of current

information, tutorials and proceedings were read from

conferences and symposiums on Quality Management, Quality

Control, Quality Assurance, Software Design, Software

Management, Software Engineering, and Configuration

44

Management. Some of the more significant contributions in

this survey were: Donald J. Reifer's "Tutorial on Software

Management", an IEEE Catalog in 1979 (Ref 7), Freeman and

Wasserman's "Tutorial on Software Design Techniques", an

IEEE Catalog in 1980 (Ref 8), and Bryan, Chadbourne, and

Siegel's "Tutorial on Software Configuration Management",

an IEEE Catalog in 1980 (Ref 50).

The tutorials provided between thirty to fifty-five

articles each on current topics concerning the software

system development life cycle. This review helped providE

an overview of what tools and techniques were beinc

effectively used in industry and the government in building

Software Quality Assurance programs.

Attendance at the DPMA National Symposium on Effective

Methods of EDP Quality Assurance on 1-3 April 81 in

Chicago, IL, provided the opportunity to speak to Canadian

and U.S. Quality Assurance experts. The full day workshop

on "Establishing the Quality Assurance Function" and the

two day conference which hosted several QA experts who

presented material on current QA efforts and directinrns

provided insights to recent industrial developments in QA.

Membership in ACM and IEEE allowed attendance at their

local meetings which host speakers who d iscuss recent

developments its software and hardware. Additionally,

membership in four of ACM's Special Interest Groups:

SIGSOFT, SIGSIM, SIGCAS, and SIGBDP and two oC IEEK's

Societies: Engineering Managem-n t cx_-ity and Comput-r

45

Society have provided all their publications which keep

members current on developments and practices in the

computer field.

Membership in The Library of Computer and Information

Sciences Book Club, provided recent publications that the

libraries in this area do not have. The books that were

purchased cover Quality Control, Project Management,

Software Quality Management, Software Engineering, and

Structured Requirements Definition.

By September of 1981, most of the exploratory research

had been completed. By then it was clear that Software

Metrics represented the "leading edge" of SQA because it

promised the ability to quantify quality by providing

objective measurement (Ref 140).

Model of Development Decision Process

The second goal: To develop a model of the decision

making process of AFLC/LM's software system development

effort which incorporates the application of Sottware

Quality Metrics, was accomplished in three phases.

Phase 1. During this phase, interviews and additional

! literature surveys were conducted to deternine how current

research in systems modeling and software metrics might

help in solving AFLC's problems in software development.

Interviews with AFLC/LM personnel wer? conducted to

clearly define the current problems in software

development, and to discuss how software metrics might

provide some of the solutions by providing a quality

*46

assessment capability. Richard Woodward, the AFLC/LM

sponsor of this thesis, provided the initial QA background

at AFLC. Cloyd D. Stratton provided information about

Configuration Management and its evolution at AFLC/LM.

Jack Tinsley provided information which described how CM is

functionally carried out, i.e., "who does what" during the

SDLC.

Additional literature surveys were conducted to

determine who had been doing the research in software

metrics and where the software metrics were being applied.

This required a review of DoD material on SQA.

Because Rome Air Development Center (RADC) was

sponsoring research in the area of software metrics, a

point of contact was established with Joe Cavano at Griffis

AFB, NY. Results of RADC's testing were not available

until March 82, at which time they were requested.

After discovering the efforts of James McCall and

others at General Electric's Command and Information

Systems Division at Sunnyvale, CA, materials were obtained

on their initial findings about Software Quality Metrics.

In order to clarify certain issues proposed by this

documentation concerning Software Quality Metrics, two days

were spent interviewing James McCall and Dave Markham at

G.E. on October 29 and 30 to determine the us,!fulness of

SQM and the validity of the metrics that they had derived.

Since G.E.'s effort to derive and va]idat- the Software

Quality Metrics is of obvious importance to the usefulnpss

47

of SQM as a measurement tool in a SQA program, a detailed

discussion of G.E.'s efforts has been included in this

thesis.

Phase 2. This phase involved developing a model which

displays the interaction between the software development

decision-making process and the user environment using QA

and systems concepts acquired in six AFIT courses:

EE 5.45--Software Systems Acquisition, EE 6.99B--Software

Management I nformation Requirements, EE 6.93--Software

Engineering, SM 6.44--Techniques in Project Management,

LM 6.15--L-gistics Decision Support Systems, and MA

5.48--Computer Systems Analysis.

The model represents the SDLC decisioning process. It

illustrates the interaction between the software

development management organization (Project Management

including the SQA function) and the user environment.

Moreover, each subsystem within this moael (scanning,

intelligence, and decision) is displayed in a manner that

clearly demonstrates the interrelationships between its

input, output, process, and feedback mechanisms.

Phase 3. Finally, in order to superimpose the Software

Quality Metrics framework onto the Phase 2 conceptual

model, the procedures developed by General Electric for

applying the metrics were "fit" into the decision-making

process to reveal how the metrics, by providing quantified

measures of software quality during each phase of the SDLC,

can improve the end-product of the software development.

48

Metric Application

The third goal: To demonstrate how the SQM concepts

can be applied on an existing system at AFLC, was achieved

by the development of checklists which are to be used by

system developers. Documentation was acquired through

Robert Brooks, AFLC/LMX, who is the Project Coordinator for

the Maintenance Management Systems Improvement Project

(MSIP). Through Mr. Brooks, the documentation on G072A

MMSIP, which is a subsystem of MMSIP, was

obtained (Ref 142).

The procedures and metrics worksheets, which were

developed by General Electric, were applied to this

subsystem. Because the subsystem had just become

operational, the development documentation, which is

described in Appendix F, was still available.

To satisfy the request of the sponsor, AFLC/LM, the

real intent of this third goal was to indicate what

changes, if any, had to be made to current documentation

requirements in order to utilize the Software Quality

Metrics in a Software Quality Assurance program for

AFLC/LM. Therefore, checklists, which account for the

software-oriented requirements for Reliability and

Maintainability, were developed to insure that software

developers know in advance that specific items should he

ccnsidered in developing reliable and maintainable

software.

49

By tulfilling this request, AFLC/LM will be able to

acquire the Automated Measurement Tool (AMT) from Rome Air

Development Center and already be set-up to use the tool in

their SQA programs.

Metric Tntegration

The achievement of the fourth goal: To use the

information generated from this research to help AFLC/LM I
formulate guidelines to integrate Software Quality Metrics

and other software tools into a Software Quality Assurance

program, allowed recommendations to be made concerning:

1. what changes in current Configuration Management

practices, such as in documentation of the system

development life cycle, should be made to meet the

information requirerients of measurement tools;

2. what software tools should be acquired to support

the collection of SQM;

3. to what extent the Software Quality Metric

framework could be used if the automated tools are not

acquired; and finally

4. what further applications can be seen for the use

of metrics.

Chapter IV accomplishes the first goal of this thesis

by reviewing current research in Software Quality Aszurance

(SQA) and analyzing software measurement tools and

techniques.

50

CHAPTER IV

SQA TOOLS AND TECHNIQUES: A SURVEY OF DOD AND INDUSTRY

A Review of current Software Quality Assurance (SQA)

programs throughout DoD and the industry has provided a

baseline to determine how software quality has been

assessed. The initial literature search revealed a

diversified description of software attributes. Table IX

summarizes the list of software attributes and indicates

the literature source for each attribute. Appendix E

provides the various definitions for each software

attribute, as it is described in the literature.

This initial survey demonstrated the need for a

diversified set of SQA tools and techniques that would be

required to assess the characteristics of a software

system. Related research by General Electric has grouped

these software attributes into eleven software factors,

with the related attributes serving as criteria which

further define each factor. This consolidation of software

characteristics is supported by other research which has

used these factors to make comparisons of SQA tools and

techniques (Refs 15, 23).

The goal of this chapter is to determine which

measurement tools and techniques should e usr d to support

51

4-

I'able IX

Software Attributes Identified in the Literature

AUTHORS

Ak1THORS

In j ,-o 2 'Eft E zc 41FTWSOFTWARE 3.1
It 34 a

P
Lax ;1, 11 ekx-

ACCEPT)WILITY
ACCEMM77-
ACCOWMEM -1 1
ACCURACY

-- -ITY _4

COMMUNICATIVENESS
COPWATABILITY
COWLULNESS

CONCISENESS

CORRECTNnT- 1 0

DOQMRTATIOR

LITY
EXPRESSION

FLEXIBILrTT-----'
GENERALITY--
RM FACT99-

1NtEROPEJMI LITY
LEGIBILITY

MITY
Jt

MODIFIABI
MDULARITT
WAAFffTTV
PERFOWN-CM-ORM -flyTL

RELTKBILM--
R.P-AM-10TT

q.LGWNtWrNT6tFEW
sl LT-W11m,01-1 A
s-F ofmoTc-n Y

TrSTMR-11f

TULEMWCU
-ITV

N i ff 7 VN-n-V V fTy .7

52

a SQA program for AFLC/LM. To accomplish this goal,

categories for software QA tools and techniques (aids) have

been presented. Next, material on "toolsmithing" has been

provided, and an assessment of state-of-the-art technology

in SQA aids has been made. Finally, a discussion about the

use of Software Quality Metrics (SQM) and the Automated

Measurement Tool (AMT) concludes the chapter.

Techniques, Tools, and Methodologies

Experience has indicated that good techniques, tools,

and methods must be employed to have a successful quality

assurance program. Software QA is a service function

created to provide management with the independent checks

and balances it needs to control and assess the software

system quality. Economic considerations are such that the

SQA function must accomplish its assigned task efficiently

and at minimum cost to remain effective. Technical

considerations are such that SQA can only justify its role

if it contributes directly to the system development with

minimal disruption and meaningful results. Both economic

and technical considerations dictate that SQA use proven

tools to automate the techniques and methous it employs to

accomplish its purpose (Ref]5).

For the purpose of this thesis, automation is defined

as mechanizing methods using tools and techniques. Tools

are computer programs used to aid the quality inspector in

evaluation of the developer's software system. Techniques

53

are procedures arranged to simplify the evaluation

process (Ref 15).

As shown in Table X, SQA Tools and Techniques, software

QA personnel employ the methods of inspection, analysis,

demonstration, and test. Inspection confirms product or

procedure compliance with stated requirements by

examination. Analysis studies the product or procedure in

detail in order to analytically confirm an answer or

results of a solution. Demonstration provides tangible and

visible evidence of compliance by making trial output

acceptable for review and comparison against stated goals.

Software QA tools and techniques can be classified

based upon the method they support. Table X lists

available tools and techniques by category or class.

Appendix H provides a glossary for these SQA tools and

techniques. It should be noted that only the Software

Quality Metrics techniques and the Automated Measurement

Tool (AMT) support the full spectrum of SQA methods.

Techniques. Table XI illustrates which techniques

support the SQA functions. These functions are

representative of QA functions that are specified in

MIL-S-52779A, Software Quality Assurance Program

Requirements (Ref 86). As shown in the table, Software

Quality Metrics, Reviewing, Auditing, and Standardization

all support the full range of SQA functions. AFLC/LM

incorporates reviews and audits throughout the software

development life cycle (SDLC) under Configuration

54

Ai a s
408 64i 0 owb * b

~~ 4I1 ii be4 j
.4 si46 >1 4' 4 4

*0 0Si4 0 01.V A w 40 w0 40 64

w1 -. 1 g
l.44 w 064 4 0w 14 4 : 4 V

0 ol 41 u * 41*6 90004 atuUaU 4 3, 1

v0W 00

54 4 IA .. A. u(EuO W)5.

4 0 0% 0 s4i o~

4 10104

.0 4.* 94 0

401
A § 4 $4 0

$4 6- '4 14 44 4*.. m44

8 ONb'e 4v 1
'.4

*f 86 0eO >1 w A u - - "'
0 00>160 -4c 0c> Ob> C

5.4 'a. > .'. 0040
66 0-0 4*eZ1 ineE4 coOU>q Q4-

6 " 4 * 4 0 0 fa 00 b e O R " . 4 ~ 4
:3 4.) 44w u)4 0A)w o0r 0 4 4be k 00

0 4 u 1 4041 4 0 mu(11f -4 -4 W. eU*a00 EU4 1O4 la 0 10
6 1 0b 6 4XA 3- $4 0 9Ct-4 U)Ul S bU 39 A $4(J 4be-1U

-4*ti4 4*' 444b1 0 Ai0a41 0w0 1 JbI -4 to .L3 EU' (1 - :3 4 1 -

0 c 0$ber 0 4* 4* 0i = 0 0w Ob0 0W 40c0 . 04 J 04
t) 0 FAU MA.) W WfU oC 4 O Q~ CJ~.4nn2 2-

I, 441u
0- ;-4 9: *

0 6 0 C 0 b

4* 0 -4eo xo u-' c~b

Aj~~ ~ ~ ~ tY . 11-i 0 -- 4 0 -4 to '0 4
0 w 0* O 0 -C 4 0 k c

go ' 0 41 :b x 4.1 Z C c 0 '. t E4u4

o 54v0 o0 WA

55

31- *C be K ww
20~1;xuooqns

3*3TASI N ~
opivpuwlg

a6~e

* A30zqT7

UOTIU b< PC VI)C PC 3-

OATIO023OD

4usmsfieuw

W4 0

54uul -.4v o24 3-

tit

0

to 0 El 'AM

0 (a w, .- I 41 ..

0 to .4 0, F M 0f W-.4 U w 0 ua

17 >EC* 4j 0O4 U U,-U .-4 IV -I 41w
-4 -4' (a to4'~ W EU tA n 4JX
c lEO *-'Oa U 0 -V.4 C1 r- 0to F 0

rlo %wc to C-4~ 41 u m c W.C
IV 4J- CC4J C 04 O0O0 4l 0 -) -1 - 441 -

-. AJ -4 _U)UU c m4 _ " 1 "N t C U) 04
w 14 0 ,L :1 4O-1 u I 1U -4 13)t-. 0
0o4-4 -CU 0 L)L) 4 4 44:3 ~ c - l4J (V

El " w 0 EJ.4:4 .- O-41 ... > F m.- 4 14

54 ~ ~ ~ ~ ~ -*-4-44 C iE..lA4 4 -4 -4U-4 41

56

Lil

Management (CM), and it is striving to improve its

procedures for standardization (Ref 38). Software Quality

Metrics (SQM) provides the procedures which incorporate

Reviewing, Auditing, and Standardization, and it

establishes guidelines, in the form of checklists, which

enhance other SQA techniques in use (Ref 23).

Table XII reveals the effectiveness of SQA techniques

in assessing quality properties. The techniques that

possess the highest assessment capability for all the

quality factors are: Design Inspection, Software Quality

Metrics, and Standardization (Walk-throughs provide "ease

in use" as well as effectiveness in assessment).

Tools. Table XIII depicts the tools that support

various SQA functions that are specified in

MIL-S-52779A (Ref 86). The Automated Measurement Tool

(AMT), Standards and Text Editors are the only tools which

support the full spectrum of SQA functions (Refs 15, 31).

Table XIV displays the effectiveness each tool provides

for assessing software quality. Only the AMT, Standards,

and Test Bed tools are highly effective in assessing all

quality properties. The Language Processor, Standards

Analyzer, and Dynamic Analyzer also provide effectiveness

to SQA program (Refs 15, 84).

Toolsmithiny

As can be ascertained from the previous section, the

software quality engineer has many tools and techniques at

his disposal. One of the quality engineer's major tasks in

57

0

A ;rq~l Z - 3c z -1 = ... -. -J .. z..j mJ z = -J -J E

4.

C£ ATlfqsul. xz z x 4z4 XZ
0*

04J

* .a

4.1
-4* 0~~q.;o tit. w wz~ z

14 C______ _W __U._c___

A~Tqu v 418 .0 4r J - 4 izzM-C -4 0-4 f
0 0 4 04tj 1 V (0 - c - U o

A tr > 6 41 0 c 4 41tr 0 (a) U
7 uS 1w(nc . 3t 44)xt

41 1 w 0w c -4 11 4 4J r Cttj t U) V :
C c 0 cu -J--J- z 41 1 u ." 0 14r. (v 0

u - - W) 0 &Z (a ' l 'o o A) f 1'4J -4CC4 L4-- - JWL
-4A .aU I(J- (A)U ltM 1 jE 44
w 14 PL 4)ta- nO0~031; -4AwL 4 KA)E:4 A

N 58

Table XIII

Supporting Tools for SQA Functions

Function

Sa 141
M' 0 0 (.
a --4 1-

C % .0 04
-4 c r *-4 'V a

4 j A 54 0 0 'a 41

UX a 46 so C U4 t

S k

Tools At 14 'A W .0 C 8. 40
ej 04 0 4j 0) :3 6

V un UO ..4 a o W (tA uU
1. Accuracy study processor X
2. Automated Measurement ToolX X X X X X X K X
3. Automated test generator X
4. Comparator X X X

15. Consistency checker X X
6. Cross-reference X
7. Data base analyzer X
8. Debugger X
9. Decision tablex K K X X X K K

10. Dynamic analyzer X
11. Dynamic simulator X
12. Editor X
13. Flowcharter X K
14. Hardware monitor X
15. Instruct.on trace X
16. Interface checker X
17. Interrupt analyzer X
18. Language processor X X
19. Libraries X X X
20. Logic analyzer X
21. MIS K X X X X X
22. Requirements tracer X X X X X
23. Simulator X X
24. Software monitor X
25. Standards K X K X X X X X X
26. Standards analyzer X X X
27. Static analyzer X X X
28. Structure analyzer X X
29. Test bed X
30. Test drivers, sct ipts X
31. Test-result proc,.ssor X
32. Text editor X X X X X X X

33. Timing analyzer X

59

Table XIr

Tool Uffectiveness in Assessing Quality Properties

Quality Property

,,4 :4 >
',4 I-4 U ,. .. ~.,. -

* .q .0 '.4 Ai 4j 4j
SU N a .4 "-4 "4- .4 .1AJ c M1 C 0 -4 '.4 .4 41
-. " 4 " 4 -. 4 -4 ".4 .. 4

-4 .0 .0 . e4o U I 4 ' • 'U 0 ,,,
Tools 4I "4 I " j -.4 4 .Q

$4 '44 41 -.4 .4 U '
o 4I C to 0 49
U b9 4 X aw 1 E'

1. Accuracy study processor M L L L L L H L L
2. Automated Measurement Tool H H H H H H H H H
3. Automated test generator M L L L L L H H L
4. Comparator L L L L L N M L L
5. Consistency checker H L L L L L H M L
6. Cross-reference M L L M M L M L L
7. Data base analyzer M I L tM M M M M L
8. Debugger M M L L L L H L L
9. Decision tables M iL M L L L M M L

10. Dynamic analyzer H H iL M M L H M L
11. Dynamic simulator H M I L L L H L L
12. Editor M L L M M L M M L
13. Flowcharter H L L M M M M H H
14. Hardware monitor M H L L L L H M L
15. Instruction trace L M L L L L H M L
16. Interface checker H L M M M L H L L
17. Interrupt analyzer H L M M M L H L L

18. Language processor H M M H H H H H H
19. Libraries L L H L L L L L H
20. Logic analyzer M M L L L L H M4 L
21. MIS H L L L L L L L L
22. Requirements tracer H L L M M M M H L
23. Simulator H H M M M M M M H
24. Software monitor M H L L L L H M L
25. Standards H H H H H H H H H
26. Standards analyzer H L /M H H H M H M
27. Static analyzer H L H H M L M M Mj-,] 28. Structure analyzer H M L H M M H H M
29. Test bed H H H H H II 11 H H
30. Test drivers, scripts M L I .I L H H L
31. Test-result processor M L L H M H H H H
32. Text editor M L L H Hi L L H H

L13. Timi, ana_ ___ ,H __ M__ I _- _L- _L

Legend: H - High effectiveness M - Medium effectiveness
L - Low effectiveness

60

developing an acceptable software quality assurance program

for a specific organization and/or project is to select

those tools and techniques that will allow him to

accomplish his functions in the most efficient and

cost-effective manner. Selection assumes that the quality

assurance organization has its methods and techniques

codified in written form (i.e., usually as procedures in a

manual), its tools developed and maintained under

configuration control in a centralized library, and its

sources for supplementing existing tools and techniques

identified in case acquisition is warranted (Ref 15).

Factors which impact selection and should be evaluated are

listed in checklist form in Table XV (Ref 87).

This checklist should be used to evaluate each tool and

technique that is considered for inclusion in a SQA

program. Using this checklist to assess Software Quality

Metrics (SQM) and the Automated Measurement Tool (AMT) as

possible aids in the SQA program for AFLC/LM, a manager or

software quality engineer will quickly realize that SQM and

AMT should be acquired because every response on the

checklist is affirmative:

Applicability. The AMT and SQM are suited for the task.
They provide the needed measures, and already check
the quality of COBOL source code (Ref 84).

Availability. The SQM and AMT are now ready for use.
Rome Air Development Center completed testing and
validation in March 1982. The AMT was prototyped on
the VAX 11/780 and modified to be used by th,, RADC
H6180 (Ref 84).

Cost/Benefit. The software and tapes for the AMT and the
supporting documents for SQM can now be acquired by
DoD agencies by submitting the request to RADC.

61

CI

VSS

-4MC0 t

CI) - r.-
C

* R0l.
r IF 2

-f C '- I C

S~~~ .- a U

c E

*~0-
8 e 4 I

ta j - '- ~ ~ .-

621

Experience. The SQK and AMT have been used on both Army
and Air Force projects. The documentation provides
the strengths and current limitations (Ref 23).

Quality. The SQM and AMT are well-documented, are under
configuration control, and have been qualified through
DoD contracts. The implementation of the AMT was done
in IFTRAN, a General Research Corporation structured
programing preprocessor to FORTRAN (Ref 89).

Resources. The SQK and AMT documentation provide the
information needed for conversion to the AFLC
environment. However, further expansion of metric
application could be achieved with development
assistance by G.E.

Risk. The only risk involved in using SQM and the AMT is
if AFLC does not first develop a database of opera-
tional history of its systems before relying on the
predictive accuracy of the metric scores. The AMT can
be used to build this data base (Ref 51).

Based on the previous discussion of SQA aids, it is

believed that the tools and techniques displayed in

Table XVI represent the minimum set required to construct a

responsive and quantitative SQA program (Refs 15, 24).

This set provides for a balanced coverage of the require-d

SQA functions as illustrated in Tables XI and XTI[. [t

also provides for a balanced assessment of the softwarm

quality factors as illustrated in Tables XIT and XIV.

Table XVI
Minimum Set of Tools and Techniques

Techniques Tools

Software Quality M etricSJtg) (AMT) Automated Measurement Too
Rev iewinit 2a
Audit in tandards Analyzer
Design Inspectio ns Dymic Analyzer

a Ik-Through@ Lanauage Processor
Ltandardiajn___iu. n4I

t,.~o..]~ ar..~d

Other tools and techniques may be added as the need

arises, so long as their cost can be justified in terms of

benefits derived. The quantitative aspect of this minimum

set of tools and techniques is a direct result of the

inclusion of SON and the AMT.

Chapter II provides the overview for using SQM;

Chapter V presents a detailed application of the SQM

concepts throughout the SDLC, and Appendix J discusses the

procedures for quantitatively assessing software quality by

using the lowest level of SQM--the metrics. However, from

a management perspective of the SDLC, it is the automated

measurement services, which operationalize the metric

concepts, that should prompt AFLC/LM to acquire the AMT.

Automated Measurement Services

The concept behind St(M is to provide software managers

with a mechanism to quantitatively specify and measure the

level of quality in a software system. To provide this

mechanism, a software developer must collect data from the

products of the software development process. This raw

data is then used to calculate metric values which can be

used to assess the quality of the software as it is being

- produced. The purpose of the A itomated Measurement Tool

(AMT) is to provide automated support to the application of

the SQM concepts. Without the AMT, the nmtrics data must

be collected by hand in a tedious, error-prone, and
time-consuming process (Rei 84).

The amount of data that can be automatically collected

64

by the AMT is limited to data that can be derived from

machine readable sources such as design materials generated

on the computer and the actual source code. The current

version of the AMT automatically collects and stores raw

data from COBOL source code (most of AFLC/LM's software is

written in COBOL). The remainder of the raw data required

to calculate the metrics must be manually collected.

A SQA analyst uses the worksheets in Appendix A to

answer questions about the system being measured. When the

worksheet is complete, its data is entered into the AMT

database, where it is stored along with the automatically

collected data.

Currently the AMT collects data from COBOL source code

for individual modules. A total of 25 different

measurements are collected automatically. These

measurements can be divided into the following broad

classes:

i. Counts of total number of code statements and
comment statements;

2. Counts for individual types of statements, i.e.,
input, output, exit, entry, declarative, etc.;

3. Counts of different types of branching statements
both conditional and unconditional, and

4. Counts of operands and operators, for use in cal-
culating Halstead's measure (Ref 23).

,I The specific data items automatically collected are shown

in Table XVII (Ref 84). Also noted in the table is the
entry on the worksheet that the item relates to and the

metric that it helps calculate. The worksheet entry is

identified by worksheet number (WS#), section number (S#),

and item number (Mi). Thus a notation such as WS3, SI, 11

6
65

409

~ * Ito
1 %X

$Is~0 a% 31% b
-~0 - 0CU

- w4 4 ~ u u

-ac ~. aUC Cc 2

1. K 61S

Ow Oc La ga -Zu -

~~~~~W -0 P. a~* ~ - - - - -

-k -4 4- A- - -4 4- I -I - -V -a a - - *-
'm~~~~~ ~ ~ c 4 4 -;& 44444C

-%A !2 IA -A L -.A V) -%M to -&A %n % A LA -A I (A %A

-4C

-C OfIA -C V-
4 4j0 ta #

10 4. 0

4a 'A~ Z 4 0 GDA

cm IA 44 c 5
I- 6 10 Q 06 cr CL g

0s 'a 4- a C U 
10 00 Go 4*4 AG

%J - 40 G. G C u 0 * 6.-
C0 0 0D. 0- 0 0 0 0 0d 44 0 a-0 0

f"U *w 00 CY 41 C4 C4 4 k v i zr 4 V
Ii, A GDU *V GD 4~ C GD D CC 4CV

664 ~I '



is read as worksheet 3, section I, item 1.

This automated support counts for 25 of the 92

worksheet #3 data items, or 27% of the measurements

required at the implementation phase of a software

development. These 25 data items help calculate 9 of the

38 metrics related to implementation, or 24% of those

metrics. The metric calculation is described later under

Report Generation Services (Ref 17).

The automated data collection is performed by the

Automated Measurement Services (AMS) and the Preprocessing

Service (PPS) subsystems. The user invokes these

subsystems using the MEASURE command. The Preprocessing

Services uses an ' II) generalized parser to decompose the

COBOL source code covcained in the file identified by the

MEASURE command. The result of the parsing is a parse(

tree representation of the source code. The AMS subsystem

then traverses the parse tree and counts the various data

items and enters them in the data base.

The significant aspect of this approach is that other

language grammars can be described to the parser, a scanner

developed, and the parser will produce a parse tree

representation of the other language. With careful

attention paid to the token representation, the AMS will be

able to process this parse tree representation of the other

language with no modification.

In addition to it being language independent, the AMT

was developed with the concept of eventually interfacing it

67



to other software tools in a software development

environment. The interfacing would be done by extracting

metric data available from the processing done by the other

tools and inserting the data into the AMT database so that

metrics could be calculated.

A program would have to be written which extracts the

appropriate data from the output file of a tool, and using

the AMT PUT command, to then insert the data into the

database. Potential tools that should be considered are:

Requirements Specification Language processors/analyzers,

Program Design Language processors/analyzers, code

auditors, code instrumentors, and Configuration Management

tools. Appendix I provides a tool survey of specific SQA

tools that could be considered (Ref 84).

Report Generation Services

The Report Generation Services (RGS) provides the user

the ability to generate various reports that reflect the

contents of a database. Nine reports may be requested by

the user to display the metric data in a variety of

formats, and by performing additional calculations, present

various forms of data both at the module and system levels.

Basically, data is extracted from the database to calculate

metric values. The algorithms for performing these

". calculations, which are listed in Appendix D, are contained

in the RGS routines. Samples of the AMT reports are found

in Appendix K, and a brief description of each report

follows (Ref 84):

68



MODULE REPORT. This report displays the catalog of

modules that have been entered into the database. It

provides a status report on the database.

METRIC REPORT. This report calculates the value of

each metric categorized by factor and by development phase.

This report is used to determine a total picture of the

project as measurements are taken.

EXCEPTION REPORT. The exception report delivers thE

relationship of each module to a given threshold value of a

particular metric. The relationship 'less than, equal to,

or greater than) and the threshold value is input from the

user. This report can be used to identify modules whose

scores do not meet a certain threshold, identifying them a,:

potential problems.

QUALITY GROWTH REPORT. When the user wishes t( track

the value of a particular metric over time, the Quality

Growth Report will furnish a tabular display of the scores

of a selected metric over the phases of the project. This

report is used to track a particular metric through a

project to see how its value changes.

NORMALIZATION REPORT. The Normalization Report

provides the user with the overall rating of a selectedii quality factor. A series of regression eqiations are

displayed which have been empirically derived from

research. The current metric values are substituted in the

equations and a rating for the selected quality factor is

calculated. Regression equations exist for the quality

69

1i



factors Reliability, Maintainability, Port-.bility, and

Flexibility only.

STATISTICS REPORT. The Statistics Report provides a

profile of COBOL constructs for each module.

SUM4ARY REPORT. The summary report provides a summary

of the metric scores for all of the modules in the system.

WORKSHEET REPORT. The worksheet report displays the

raw data entered in each worksheet. It represents the

current values in the database. It is used to verify and

track data entry.

MATRIX REPORT. This report displays the average and

standard deviations for all metrics values for all modules.

ThiT report displays all of this information in a matrix

form allowing the user to easily identify modules with

metric scores that vary from the system average.

The reports may be classified as to their primary use:

Descriptive, Historical, and Diagnostic. The reports that

are descriptive are :he Summary, Matrix, Module, and Metric

reports. Their common characteristic is that they report

data and in content or format implying no judgements

concerning the data. The Summary Report ceports all metric

scores for each module or for all the modules. It is a

detailed and relatively long report. The Matrix Report

displays the mean and standard deviation of the modules for

each metric. It is a good snapshot of the data in the data

base. The Module Report is meant for operational

personnel. It simply reports those names of the modules

70



which are in the data base. The Metric Report is a more

detailed output which displays the metric values for each

module in a detailed form.

The Historical Reports are the Quality Growth and

Worksheet Reports. The Quality Growth report provides the

quality trend of a module through the development phases.

The Worksheet Report gives a very detailed display of thE

raw data before it is transformed into metric scores. Its

main use is to track data entry and updates.

The Diagnostic Reports are those that show potential

problem areas. They are the Normalization, Exception, and

Statistics Reports. The Normalization Report applies the

regression equations derived from research to metric values

related to the quality factors of flexibility,

maintainability, portability, and reliability. These

regression equations hive been developed through

examination of previous projects and correlating their

metric data with various time and cost data (Ref 23).

Regression equations for the remaining quality factors

have not been established. The Exception Report provides a

comparison of the metric scores with predetermined, user

A supplied values. The Statistics Report gives a diagnostic

snapshot of any module. These data may be usr.d to evaluate

standards or identify potential problem areas (Ref 84).

Table XVIII indicates the reports that support the

decisions and actions related to program management,

developers, software quality assurance, and test. Some

71



Table XVII. Support To Personnel

PERSONNEL SUPPORT REPORT TYPE

Program Management Progress with Respect Normalization Function

to Quality Goels Quality Growth Metrics

Developers Standards Enforcement Metrics

Design Decisions Summary

Quality Assurance Standards Enforcement Metrics

Compliance with Quality Quality Growth
Goals Problem Identification Exception

Normalization Function

Test Test Strategy Metrics

Test Emphasis Summary

Test Effort Exception

72



examples are:

The Normalization Report calculates an overall rating
of a particular quality factor such as reliability and
provides program management a summary of the project's
progress toward a specific goal for that factor that
was set at the outset of the project.

The Metric Report provides the current metric scores.
Developers utilize this report to aid in design and
implementation decisions.

The Exception Report is utilized by Quality Assurance
personnel to identify those modules which vary signifi-
cantly in characteristics from the average. These
modules should be investigated further for non-
compliance with standards and conventions or potential
problems.

The Summary Report is utilized by test personnel to
evaluate the amount of code being developed, the com-
plexity in terms of number of paths, the number of
interfaces, etc., any of which have an influence on
test strategy and effort.

The adherence to SQM methodology will greatly enhance the

effectiveness of the tool to support the production of

quality software (Ref 88).

ChaRter Summary

The software quality assurance program for AFLC/ M

should utilize tools and techniques whose cost/benefits can

be demonstrated. The minimum set of these SQA aids that is

recommended is shown in Table XVI. The SQA organization

should have a toolsmith whose sole responsibility should be

the development and maintenance of written )rocedures and a

tool library. Tools placed within the library should he

qualified, documented, and placed under configuration

control. Acquisition of new tools should -ccur only when

they can be economically justified.

73



Reifer justified the inclusion of Software Qiality

Metrics and the Automated Measurement Tool in a SQA

program. He stated, "We can conclude from experience that

tools and techniques improve final program quality. Before

we can progress further, we have to have a better and more

quantitative understanding of just what quality is and how

you can measure it. Only then can we hope to make quality

an integral part of the software systems we

produce." (Ref 15) SQM and the AMT provide for the

quantitative measurement of software quality that is

required.

Chapter V provides the map for utilizing SQM and the

AMT by demonstrating their application in the SDLC.

74



CHAPTER V

SDLC DECISION-MAKING MODEL: A MAPPING TO SQM

It is an accepted proposition that man's judgement is

no better than his information, yet the magnitude of data

generated by staffs and computers usually only serves to

overwhelm the decision-making process. Hence, there is a

need to model the decisioning process within the software

system development organization to determine what

information is needed at specific points during the SDLC.

The Software Development Life Cycle

Before the model can be developed, it is necessary to

further describe the Software Development Life Cycle (SDLC)

and to identify the deliverables for each phase. Gustafson

and Kerr in "Some Practical Experience with a Software

Quality Assurance Program" in the Jan '82 Communications of

the ACM noted that one of the first steps in establishing a

1 SQA program is "to define the development life cycle used

(or preferred) within the organization sponsoring a ,new

" iquality assurance program...,(and then) the deliverables

for each phase must be identified (Ref 56).

Figure 7 provides the details for Software System

D)evelopment Life Cycle (SDLC) for AFLC/LM. Abstracting

75



4-

I-A4

~tzsn
&6NJ

LLa

S 4-

=2J Lai

LL. Call <LOkj0C in
C! Li 4A

uC I inS w m-I3 La 0- C-

cc IAL CA__CL___SOM ___

c) I.-

L476

~4



information from the June 1981 revision of AFLC/LM's

Configuration Management chart for Automated Data Systems

(ADS) Development, Figure 7 defines the phases of the SDLC

and identifies the deliverable products for each phase.

Moreover, the milestones which indicate the completion of

each phase are also identified. For example, the end of

the Definition Phase is marked by the System Design Review

(SDR), which is a milestone of the SDLC. The primary

deliverables are the Functional Description and the Data

Project Plan. Appendix F furnishes: the description of

each phase of the SDLC, the identification and contents of

the deliverable products, and the significance of each

milestone.

The deliverable products for the reviews and audits

will be used as inputs to the model of the decision-making

process within AFLC/LM's software development organization.

Modeling the Decisioning Process

A basic process of the system development organization,

which is a basic process of all open syatems, is acquiring

data from the user environment, and from its internal

parts, to be "consumed" in problem-definition and

decisioning in the service of its attempts to alter its

intended-states-of-affairs, its internal structure or

function, for some aspect or domain of its

environment (Rel 53).

This process, that of data acquisition, from the

environment, constitutes what has here been called the

77



WM

"scanning process." The system must be related to the

environment through two kinds of channels: the afferent (a

scanning system), through which it receives information

about the environment, and the efferent (decision system),

through which it acts on the environment (Ref 54).

The relationships between the software system

development organization (project management) and user

environment are shown in Figure 8. For logical

completeness, a third subsystem, the Intelligence or

Internal Organizing System, has been added to reflect an

understanding of the role of information in the

decision-making process. Organizational actions which are

the outputs of the efferent (decision) subsystem are not

based upon outputs of the afferent (scanning) subsystem,

but rather upon the outputs of the intelligence (internal

organizing) subsystem which acts as an evaluator of the

receptor or scanning subsystem. Raw sensory data received

by the scanning (receptor) system is eventually fed into

the decision (efferent) system when it is utilized for

problem-solving purposes (Re 49).

The next step of tils sequence is a selective

conversion and organizatiot of the data, into a form

suitable for consumption by management. It is only through

this conversion process that the data can become

information. It is this information which serves as a

basis for decision-making (Ref 49).

It must be emphasized that none of the three subsystems

78



(scanning, organizing, decision) shown in Figure 8 operate

independently or constitutes a separate unit within the

organization. It is quite likely that one or several

individuals within the system development organization may

be engaged in any or all three of the activities at various

times.

This interactLon systex. has been treated conceptually

as a hierarchical system. A hierarchical system is one

that is composed of interrelated subsystems, each

subordinate to the one above it (Ref 53). This

Oboxes-within-boxes* way of looking at a complex phenomena

is not a mere partitioning of elements but one joined to

the relationships of the several parts with one another and

with the whole. This interaction is regulated by the

decision-making process (Ref 49).

Moreover, the actions of the software system

development organization, shown in Figure 8, are iterative

in nature because for each phase of the SDLC another

iteration (or flow through the three subsystems) occurs.

In other words, to advance from one phase of the SDLC

to the next, a decision has to be made. This decision

determines if the current phase is complete and that the

development effort should continue to the next phase, or

* iresolves problems in that current phase.

The procedures for defining software-oriented quality

attributes, which were? presented in Chapter fI, are used

within this model to determine what data is appropriate and

79

i ..



ENV IRONMENT

Constrai nts Opportunities

INTERVAL OF CONCEPTUALIZATION

SDcniing (Efferent) System

Input Process--[Output

Dcisontinufere Syannn em

Fiue87otaeSse eeomnt-EvrnetItrcinSse
80dbc



to convert the data into usable information, which is, in

turn, used by the software system development organization

to make decisions about the progress of the development

effort.

Iuposing Metric Framework on the Model

The first step in applying the framework for software

quality is to conceptualize the environment in which the

user's system will be operational. It is important to

realize that individual managers within the user group will

have different views or conceptualizations of the user

environment (Ref 58). Each manager has a ditferent

concept of what the constraints, threats, opportunities and

functions of the user environment are. Moreover, this view

of the user environment is constantly changing with time

because of changes in requirements, regulations, etc.

Therefore, it is important to establish a group consensus

of the user environment for a specific period or interval

of time. In practice, this "interval of conceptualization"

will be the top executive's model of his user organization

(hopefully with input from lower level managers).

This conceptualization of the user environment,

establishes the desired or required characteristics of the

4: proposed software system which must support the user

operations.

Table IV in Chapter II, page 33, provides a basic

checklist to help managers identify these software system

characteristics. Figure 9 illustrates an example of

81



0

40 1 4
"4 >1 w >144

41 n J > I : -f ) 0
S1 4V 0)4 4

>4 -4c-1 oo rzq
o 0 00C J( D - -

44 04 3t-V. W 4w L o
-4 4 0s 4j r- 4 - -4-Lr4I 4W\-
40 V4 40 w 0o41 VJ- 4"4 0=1:

0 :sq4 V V"40" - 0 4 0
En 0 - W O 14 0U

V1 4.1 -0O)k

0 
>4

41 41
03 0U..

04 (d W> A JU
04 0 41 U)

> 0 444 - r44 4-44
41 -4 04 44gov fa

04 41 V V 1I .

0 4) --4 0-I O

0 4444441"44

rz~~ 41 004 10J
4-' 9- 0''~ 7"
0 , 0d VL "4 4

Cl4 44 3tH ) 44 4
0 J 44> 0E4

V It

0j C) 4 0'. - U
"4 "4 C) 4

0 V- faU 1

"4

CLE-41

82



applying this software metric methodology.

By establishing the important characteristics of the

system as being Real Time Application and having a Long

Life Cycle, a manager (or management group) can then use

Table III in Chapter II, page 32, to more easily isolate

the software quality factors which are related to the

system characteristics.

By using Tables III and IV in interviews with AFLC/LM

personnel, six software quality factors initially emerged

as candidate choices. From the system characteristic of a

Real Time Application, three factors were related:

Reliability, Efficiency, and Correctne ss. Having a Long

Life Cycle as the other system characteric produced three

more factors: Maintaiinakility, Flexibility, and

Portability.

Table V in Chapter II, page 34, was used to tailor

these factors to AFLC's cost (and environmental)

constraints. The table shows that the factors can be

grouped according to system life cycle activities

associated with a delivered software product. The

cost-to-implement versus life-cycle-cost-reduction

relationship exists for each quality factor. Tt was this

: relationship and the life cycle implications that made

Reliability and Maintainability the two critical factors

for this system, G072A.

Tables VI and VII in Chapter II on pages 35 and 36,

* further substantiated this selection of Reliability and

83



Maintainability in that the relationship between these two

factors was synergistic.

Ratings for the two quality factors could be

established using Table XIX. For example, a reliability

rating of .99 requires less than one error for every 100

lines of code to be detected during formal testing. A

maintainability rating of .8 requires two man-days as an

average level of maintenance for correcting an error.

These ratings can also be established at each measurement

period during the development as follows:

REQ PDR CDR IMPL ACCEPTANCE

Reliability .8 .8 .9 .9 .99

Maintainability .7 .7 .8 .8 .8

The progressively better scores are required because there

is more detailed information in the later phases of the

development to which to apply the metrics and more

confidence in the metrics' indication of quality. This is

analogous to the concept of reliability growth (Ref 28).

The next step in establishing the software quality

requirements specification used Table VIII in Chapter II on

page 38 to proceed from the management-oriented quality

factors to the software-oriented criteria. By design, the

identification of these criteria was automatic and

represented a more detailed specification of the quality

requirements.

The software criteria which were established from

Reliability were: Error Tolerance, Consistency, Accuracy,

84



F al P1--~---

a'j
aco

ar 1
4- 4- t"-

09, 0

w< a aC
- a -AC-t

III t-4Ai 4- w 4-
- - -- - -of V L. -It

V L
S LW 4J

41 4 .C J-.C

Ii 3
_ 3-3- aev

ow o 0
GIc J

11.3 'I85



and Simplicity. The criteria established from

Maintainability were: Consistency, Simplicit-.

Conciseness, Modularity, and Self-Descriptiveness. The

definitions of these factors and criteria are provided in

Appendix E. These definitions, which are summarized in

Table XX, along with an explanation of the metrics for each

of the criteria (described in Appendix C) should be

provided to systems analysts, programmers and anyone else

involved in the software development process.

An important management concept was realized at this

initial phase. Gerald Weinberg demonstrated that

goal-directed system development did much to improve the

quality of the software system (Ref 27). By stating

up-front the specific attributes which the system must

exhibit, project management can greatly influence the

effectiveness of the end-product.

Furthermore, the structured methodology of the

framework for Software Quality Metrics enables managers,

who know little about software but much about what is

needed to support the user group, to define their

requirements specifications in software-oriented terms. At

the beginning of the conceptual phase, software-oriented

requirements can be specified in the Data Automation

Requirement (DAR) and the Data Project Directive (DPD).

Monitoring the Development Effort

The framework for Soft4are Quality Metrics provides the

quality assessment capability needed by management in its

86



AAIIB S01 AIR FORCE INST OF TECH WRIGHT-ATTERSON AFB 04 SCH400-ETC F/S 9/2
SOFTWARE SUALITY TRICS1 A SOFTWARE MANAGEMENT MONITORIN, METH-ETCCUI
MAX OR 5 J .JARZOWK

UNCLASSIFIED AFIT/KS/MA/SI*uuuuuIIIIuIIu
EllllE~lE~llEI
EIIIEEEEEEEEEE
EIIIEEEEEEEEEE
EEEEEEEEEEEIIE
IEIIIEEEIIIIII
IIIIIIIIIIIIII



t.

x x

0 L . ~

0, -* -t 7

E- a.Eaa.

*0 01. o
0 *'. 4~ C- d *

c 01-"

.81 AS 0 A 9 .8 A

43Si 0 W IA -i.

D2 0 ~ 0(. U

*87



decision-making process. Figure 10 superimposes the

application of Software Quality Metrics onto the

decision-making process. It represents the conceptual

structure of the decisioning process for one phase of the

SDLC. It is within this iterative structure that the

lowest level of the Software Quality Metrics framework --

the metrics -- is applied. This level enables the

quantification of software quality.

Displayed in Figure 9, the software quality attributes,

established in conceptualizing the system requirements of

the user environment, require system level and module level

collection of data which is to be collected during the

phases of the SDLC. The specific data to be collected is

requested on metric worksheets listed in Appendix A.

A Conceptual Walk-Through

Currently, the volumes of documentation generated

during the SDLC under Configuration Management serve to

overwhelm project management. Indeed, the magnitude of

data cannot be "consumed" in problem-definition or in

decision-making.

The scanning (afferent) system must therefore beA selective in its collection of data, and should have the

capability to ascertain what data is required for

decisioning. This is acquired through the use of Software

Quality Metrics. To promote an understanding of how the

metrics can provide the assessment of software quality, a

conceptual walk-through of Figure 10 must be performed.

88



Or anzina Infelence Sstem
Feedback Exinsr al Mi amollecte

In tProcess Output
Sot wrepam l, Generate Fr

Duig QualityDaaBs [4wt Metric
Retic anMerive SWores and

Wokseebc)Exl Metric II Exlanaio

_______ Scores

Decision (Efferent) System

Figur c 10DQ pledt te Decision-tPocs

ReprtsSinifcace onin89o

an ofFAig Cag h



Input to the scanning system is the raw sensory data

generated by software development documentation, source

code, etc. The metric worksheets provide the selection

process by specifying what data to obtain. The up-front

specification of software factors and attributes has

narrowed the scope of data to be collected. Specifically,

by determining Reliability and Maintainability as the

software factors, metric data is collected which assesses

the software attributes: Consistency, Simplicity,

Conciseness, Modularity, Self-Descriptiveness, Error

Tolerance, and Accuracy. Though other metrics should also

be collected, management attention can be focusing on the

achievement of Reliability and Maintainability.

Moreover, the metric worksheets serve as feedback to

insure that documentation is complete, i.e., confirming

that the information that is requested by the worksheets is

actually found in the system documentation. This should

warn project management that documentation is incomplete,

thus allowing early detection of a problem. Also serving

as a checklist to insure that all metric data is collected,

the worksheets function as the output of the scanning

system and as the input to the organizing (intelligence)

9system.
. :The process internal to the organizing system is the

* actual update of the Automated Measurement Tool (AMT) data

base. In turn the AMT automatically computes the metric

scores by using the algorithms listed in AppendiA D. The

90



ANT provides a report generation function, which was

discussed in Chapter IV, that can be used to provide

specific information to project management, the system

analysts and programmers, the SQA staff, the test group,

and researchers. The nine reports it generates (Worksheet,

Summary, Matrix, Statistics, Quality Growth, Normalization,

Module, and Exception Reports) can be complemented by

organizational forms specific for AFLC/LM.

These forms provide the basis for feedback in resolving

inconsistencies in actual metric scores to what may have

been expected. This provides direction to the development

staff to look in specific areas of the programs for

possible problems. As output of the organizing system,

these forms provide the input to the decision (efferent)

system.

At this point, management is in a better-informed state

to make decisions about the quality of the system. The

forms and explanations provide the decision system with

information (not raw data) about possible cost trade-offs,

various development alternatives, and the quality of the

software. The feedback would be to determine the specific

information that could further enhance the decision-making

>,4 process.

The output is the decision: to contirue on to the next

phase, to repeat portions of the current phase or to

fall-back onto a portion of a previous phase to change a

part of the development effort. For example, ii an

91



opportunity could be realized by changing a requirement,

even though the development effort is in the design phase,

then some of the procedures would have to be duplicated and

a pass through the three systems (scanning, organizing, and

decision) would insure completeness of the change.

It is anticipated that by accomplishing the

structured-flow through the scanning, organizing and

decision systems and by satisfying the information

requirements of the Software Quality Metrics, that the

appropriate decision at the end of each phase will be to

continue to the next phase.

Metric Application Throughout the SDLC

Each phase of the System Development Life Cycle is an

iteration of Figure 10; however, there is a sufficient

amount of variation among the phases to warrant a

discussion of the flow through the entire SDLC. The entire

structural model of the SDLC superimposed by the framework

for Software Quality Metrics is displayed at the end of

this chapter in Figure 15.

The procedures for describing the software-oriented

attributes of the system, which are depicted in Figure 9,

A remain the same for each system development.

Requirements Analysis Phase. Represented in Figure

11, the Requirements Analysis is the first phase of the

SDLC and is called the Conceptual Phase under Configuration

Management at AFLC/LM. At the end of thi:; phaso, the

92



Orqnizn9 Intllienc) Sytm
Feedback-- esle alRgInconitgeies fie

Sotwem Inutiate Generate
Quity 11 Inon Sistemce Formlith

~~~Metrics loitrDc.shxpanto

Dec aiin Infelience Sstem
Deeriede ac o Rece Innitenis

Software IDestrinaeGnrt
Formlith Igfcncteces Cotiethe
etiswt Do.&ExplanationofFnig
Wokhe okh e.&of Findings adayCs oCaq h

Tradin EffsDeve oystnt

DeeriAquy of. Requirements & Doumv ai; o

939

Deemn Deiint

decision-making process is extremely important becau;e the

Software Requirements Review (SRR), which establish *s the

Functional Baseline, serves as the milestone that also

represents the beginning of the)efinition phase.

Therefore, the data which serves as the basis foc the

decision-making process plays a key role in determiniig the

completeness of the Requirements Analysis.

The primary input to the scanning system during the

Requirements Analysis is the documentat on specified for

the SRR under Configuration Management. Other documents,

such as the Data Automation Requirements (DRR) and Data

Project Directive(DPD) also serve as sources for input

data. The scanning process is the manual collection of

system level metrics as specified by Metric Worksheet #1 in

Appendix A.

Because it was decided up-front that the software

system must exhibit the quality factors of Reliability and

Maintainability, the data collected, which should be

available during the systems requirements analysis, is

information which checks:

if error analysis has been performed and budceted to
functions;

if there are definitive statements of the accuracy
requirements for inputs, output, processing and
constants;

if there are definitive statements of the error toler-
ance of input data;

if there are definitive statements of the requirements
for recover.- from computational failures;

if there is a definitive statement of the requirements
for recovery from hardware faults;

if there is a definitive statement of the re qairements
for recovecl from device errors;

the number of major functions and data references; etc.

94

The Software Quality Metric Worksheet #i provides the

feedback to project management and the SQA function by

providing a checklist to insure that a complete analysis of

requirements has been conceptualized and documented. The

Metric Worksheet #1 functions as the output document of the

scanning system and as the input document of the organizing

system within the Requirements Analysis Phase of the SDLC.

The process within the organizing (intelligence) system

updates the Automated Measurement Tool (AMT) data base and

investigates inconsistencies within documentation,

requirements analysis, and worksheet specifications. For

example, certain requirements of the system may be in

conflict with the attributes which seek to insure that the

system will be Reliable and Maintainable. These findings

can be discussed on an organizational form which explains

these possible inconsistencies.

This organizational form serves as the primary output

of the organizing system and the input for the decision

system. Although the metrics reports can be generated by

the AMT, they provide very little useful information this

early in the SDLC (during requirements analysis). The

process involved within the decision system is to determine

the significance of the findings generated by the

organizing system. Cost trade-offs should be considered in

keeping the requirements as they are, or to modify the

system requirements to insure high Reliability and

Maintainability. It is the decision system which provides

95

the feedback to determine the adequacy of the system

requirements and documentation.

By utilizing the feedback within and between the

subsystems and applying the metric concepts, it is

anticipated that the logical output of the decision system

will be to continue to the Design Phase of the SDLC.

Design Phase. Represented in Figure 12, the Desigr

Phase is the second phase of the SDLC, and it is the

equivalent of the Definition through Detail Design Phas(

under Configuration Management for AFLC/LM. This phase

plays an important role in the SDLC decisioning process

because the System Design Review (SDR) which establishes

the Allocated Baseline, the Preliminary Design Reviev

(PDR), and the Critical Design Review (CDR) all serve as

decision milestones. Therefore, the data, that is made

available on Design Phase documentation and serves as the

basis for the decision-making process, plays a key role in

determining the completeness of the Design Phase.

Each review (SDR, PDR, and CDR) represents another

iteration of the flow through this phase. In the true

sense, this is a recursive phase -- it repeats itself in

the collection of data during each design review.

Therefore, the input to the scanning system during the

Design Phase depends upon the particular review or

iteration of this phase.

The scanning process is the manual collection of both

system level and module level metrics as specif Led by

96

I

Def in ition Throuah Detail Design Phase

Scanning (Afferent) System

(as available) Manual Generate
SDR, POR, II Collection SQM
CDR 0.~Jo System Worksheet

A~ Module #2a A #2b
_______ J[Level Metric _ _ _ _

Organizing (Intelligence) System
Feedback-Explain Metric Anamolies

SQM Update ANT Generate
Worksheets DataBase and Applicable
#2a & #2b Derive the AMT Reports

Metric Scores & Organiza-

Decision (Efferent) System

Determine Adequacy of Design Specs & Documentation

RprsDetermine Decision
ReprtsSignificance to Continue&of Metric or ChangeExplanations Report rind- Development

ings ~ an ffort

Collc Inf rmationFrom Ec idl

Fiqure 12. Desion Pha-'

97

Metric Worksheets #2a and #2b which are listed in

Appendix A. It should be noted that if a standard design

language such as PDL (Program Design Language) is used,

then the AMT can be used to collect the data. The

efficiency of this automatic collection of data not only

saves time and human resources but comes close to providing

real-time feedback on the computation of metric scores.

Because it was decided up-front that the software

system should be highly reliable and maintainable, specific

data, which should be available during the design phase, is

collected at both the system level and the module level, as

indicated by the metric worksheets.

The data which the Metric Worksheet #2a collects is

system level information which checks:

if match library routines to be used have been checked
for sufficiency with regards to accuracy require-
ments ;

if concurrent processing is centrally controlled;
if error conditions are reported by the system;
if errors are automatically fixed or bypassed and if

processing continues;
if errors require operator intervention;
if provisions for recovery from hardware faults and

device errors are provided;
if a hierarchy of system, identifying all modules in

the system, is provided;
if the number of modules is recorded; if so, what is

the number of modules.

The data which Metric Worksheet #2b collects is module

level information (collected from each module) which checks

if:

numerical techniques being used in algorithms have
been analyzed with regard to accuracy re.quirz:me:its;

values of inputs range have been tested;

98

contlicted requests and illegal combinations have been
identified and checked;

there is a check to see if all necessary data is avail-
able before processing begins;

all input is checked, reporting all errors before pro-
cessing begins;

loop and multiple transfer index parameters range are
tested before use;

subscripts range are tested before use;
outputs are checked for reasonableness before pro-

cessing continues;
etc.

The Design Phase metric worksheets provide feedback to

project management and the SQA function by providing a

checklist to insure that the design specifications

adequately describe how the system requirements will be

achieved. Moreover, the worksheets insure that the

necessary design information is documented. Worksheets #2a

and #2b function as the output documentation of the

scanning system and as the input documentation of the

organizing system within the Design Phase of the SDLC.

The process within the organizing (intelligence) system

updates the AMT data base and derives metric scores. It

also seeks to explain metric anamolies -- inconsistencies

with historical data versus current metric scores. ['he

reports that are generated by the AMT pcovide useful

information even in this early phase. Organizational forms

should be generated to document any iricotsist-ncies and to

provide explanations of the metric reports. These forms

will be used with the metric reports as output of the

organizing system and as input to the decision system. The

decision system determines the significance of the metric

99

[j i - 11"-- r[

reports and organizational reports. Again trade-offs must

be considered, and a determination of the adequacy of

design specifications and documentation can be challenged.

By using the feedback within and between the subsystem and

applying the metric concepts, it is anticipated that the

logical output of the decision system will be to continue

to the Implementation (coding & checkout) Phase.

Implementation Phase. Represented in Figure 13, the

Coding and Checkout Phase is the third phase in the SDLC.

This phase is the equivalent of the Development (Code

through Subsystem Test) Phase under Configuration

Management for AFLC/LM.

Detailed Design Specifications from documentation which

resulted from the CDR serve as the preliminary data input

to the scanning system. Once programming has begun, the

source code provides data input. During the subsystem or

unit test, the Preliminary Functional/Physical

Configuration Audits (FCA/PCA) and Product Verification

Review (PVR) represent key decision-making points during

the SDLC. As a result of the PVR, the Product Baseline is

established. Therefore, the input to the scanning system

during the Implementation Phase depends upon the particular

iteration (review, audit or code) of this phase.

The scanning process is the manual and AMT collect of

module level metrics as specifid by Metric Worksheets #3

and #21, which are listed in Appendix A. If a standard

design language is used, tho AMT ,-an be used to

100

- . . . llitil - " ? . : ':'", . : . . -,,,

Development (Code ThroUgh Subsystem Test) Phase

Scannin Afferent S stem
i nsure al M -.- ed

as availableI Manual & AMT Generate
Source Code, Collection SQM
Detailed H of Worksheet
Design Spec, Metric Data #3 and
FCA/PCA, & Update #2b

Organizing (Intelligence) System

Feedback--Explain Metric Anamolies

SQM Update AFT Generate
Worksheets DataBase & AMT Reports
#3 and #2b Use AMT to & Organiza-

Derive the tional Forms
Metric &

Scores I Explanations

Decision (Efferent) System

Determine Adequacy of Development Inforaion

FRepurts e 3Determine Dec i s io n t oForms, & Significance Continue or

Explanations of Metric to Change ,

Information nthe Develop- Efr

Continue Scanning

~Figlure 13. P'rogramming & Checkout

101

L

automatically collect the detailed design data. The AMT

automatically collects source code data for module level

metrics. A metric worksheet is used for every module to

insure all metric data is collected. As a module is

changed, Worksheet #2b must also be updated, thus replacing

the previous Worksheet #2b for that module.

To insure that software exhibits Reliability and

Maintainability, specific data must be present. The metric

data which Worksheet #3 collects from each module checks:

the number of decision points;
the number of declarative statements;
the number of lines excluding comments;
the number of statement labels;
the number of conditional branches;
the number of unconditional branches;
the number of loops;
the number of lines of comments;
if there are prologue comments containing information

about the function, author, version number, date,
inputs, outputs, assumptions and limitations;

the number of decision points and transfers of control
that are not commented;

if all machine language code is commented;
etc.

The data on Metric Worksheet #2b needs to be updated as

the modules are changed checks if:

numerical techniques being used in algorithms have
been analyzed with regard to accuracy requirements;

values of inputs range have been tested;
*conflicted requests and illegal combinations have been

identified and checked;
-4 Ithere is a check to see if all necessary data is avail-

able before processing begins;
all input is checked, reporting all errors before pro-

cessing begins;
loop and multiple transfer index parameters range ar -

tested before use;
subscripts range are tested before use;
outputs are checked for reasonableness before pro-

cessing continues;
etc.

102

The Implementation Phase metric worksheets provide

feedback to project management and the SQA Function by

providing a checklist to insure that the coding and

checkout procedures adequately produce the specified

software system. Moreover, the worksheets insure that the

necessary development information is documented.

Worksheets #2a and #3 for each module function as the

output documentation of the scanning system and as the

input documentation to the organizing system within the

Implementation Phase of the SDLC.

The process within the organizing (intelligence) system

updates the AMT data base, derives metric scores, and seeks

to explain metric anamolies. The reports that are

generated by the AMT provide a quantified assessment of

software quality. Organizational forms should be generated

to document any inconsistencies and to provide explanations

for the metric scores. These forms will then be used with

the metric reports as the output of the organizing system

and as the input to the decision system of the

Implementation Phase.

The decision system determines the signiticance of the

metric reports and organizational forms. At this point an

1. adequacy of development documentation can be challenged --

the metric reports will show the problem areas. Manageimnrt

can inquire of the amount of code coverage (numbe'r of paths

executed) and determine if all code can be rea. hed. By

using the feedback within and between the subsystemns .-ind

103

applying the metric concepts, it is anticipated that the

logical output of the decision system will be a smoot

transition into the Test-and-Integration Phase.

Test and Integration Phase. Represented in Figure 14,

the Test-and-Integration is the fourth phase in SDLC. This

phase is the equivalent of the test phase (and System Test

in the Development Plan) under Configuration Management for

AFLC/LM.

The subsystem/system test results and PVR serve as the

preliminary input to the scanning system. The

documentation associated with the final FCA/PCA js also

available during the initial part of the test phase.

Finally the System Validation Review (SVR), which

represents a key decision-making point of the SDLC, marks

the end of the test phase. Therefore, the documer tation

associated with the SVR must detail all the data which is

necessary to insure a reliable and maintainable software

system. Because this becomes available at differ,nt

pointsduring the test phase, the input to the scanning

system during the test phase depends upon the particular

iteration (flow through) of this phase.

The scanning process can rely mainly on the AMT- to

collect the module level metrics as specified by Metric

Worksheet #3, which is updated from the implementation

phase. Because this phase is testing for the total system

integration, it is necessary to update Metric Worksheet #2a

to insure that any changes to modules ditring the

104

DeterminsAde all OMre Co rtnf'. j

:4~ ~~~~Ts Rerts, f trtooint
FormsC, Coltse OpSQM o
V Spetried orksheets-

Explantions evlsi Mefi tinuc the

ulDeeine L eeportsnt

C3o ble. &m tiona-

F iqirp1 Ares _jn i Itr Formsn

Deison(Efeen) yse

Implementation Phase did not adversely affect the system

level performance. The updates to the metric worksheets

provide the checklist to insure necessary documentation and

feedback to project management and the SQA function. The

metric worksheets, #3 for each module and #2a for the

system, function as the output documentation of the

scanning system and as the input documentation to the

organizing system within the Test-and-Integration phase of

the SDLC.

The process within the organizing 'intelligence) system

updates the AMT data base, derives metric scores, and

determines potential problem areas (modules). The reports

that are generated by the AMT provide a quantified

assessment of the software system quality. Organizational

forms should document the potential problems within modules

identified by the metric reports. These forms will then be

used with the metric reports as the output of the

organizing system and as the input to the decision system

of this phase.

The decision system determines it the system satisfies

the specified levels of quality, as stated during the

requirements analysis. The decision-iikers inust decide if

- the potential problem areas should be investiqated or to

simply identify the modules and allow the --ystem to go into

operation. By using the feedback within and between t:1.h

subsystems and applying the etric *-oncepts, it is

anticipated that the logical output of the dcision syst-m

106

will be to allow the system to become operational.

Figure 15 shows the interrelationship between the

phases by indicating the possible flows through the SDLC.

Because each phase has already been depicted in Figures 11

through 14, the legibility of each element is not

important. The significance of Figure 15 is to demonstrate

that the entire SDLC is iterative: processes are repeated

within phases, phases can be repeated, and decisions can be

made to "fall back" to any previous phase. It is necessary

to understand that changes introduced later in the life

cycle require a flow through the entire model. Only then

can the developer insure a "complete" software system.

Chapter Summar'

Conceptualized within the context of the

decision-making process, software development has been

portrayed as an iteration of subsystems within the various

phases of the SDLC that require specific information to

enhance decisioning. The utilization of the SQM concepts

provides a quantitative assessment of software quality for

a goal-directed system development which is controlled by

management.

Chapter VI develops the checklists which enhance the

SQM concepts by providing prescriptive elements which are

indicators of reliable and maintainable software.

*L07

j ,1 till~

54 5

II08.

Li j' iJ*

CHAPTER VI

SQA INFORMATION REQUIREMENTS: A CHECKLIST

To insure a quality software system, the deliverable

products must provide information to demonstrate that th-1

software system exhibits the desired quality attributes.

The metrics, which establish the quantitative assessment oE

that software quality, are not based on the availability oF

specific documentation, but rather on the availability of

key information. With this in mind, it is the intent of

this chapter to satisfy the third goal of this thesis: to

demonstrate how the SQM concepts can be applied at AFLC.

This is accomplished by providing checklists for system

developers. The checklists help to insure that key

information is made available during the SOLC. Because the

checklists use items from the SQM worksheets, which are

descriptive in nature, they expand the SQM concepts by

providing a more prescriptive means for developin; quality

;oftware.

Documentation Requirements

One of the main considerations in ipplying Sottware

Quality Metrics is the availability of data or software

products which provide the sources for collection of the

109

metrics. Software products include the source code (the

most obvious and researched source of metrics to date),

documentation including requirements specifications, design

specifications, manuals, test plans, problem reports,

correction reports, and reviews (Ref 24).

There are basic documentation rcquirements regardless

of the size or cost of a program. Certainly, less

documentation is produced during a low cost/short life

project, but it should still contain certain information.

The documents may not be in as much detail, yet they still

must contribute to the quality of the software product.

indeed, this is the situation for AFLC. The program

classification dictates the documentation requirements.

Major programs are better documented because of upper

management attention. For example, MMSIP (Maintenance

Management Systems Improvement Project) and its subsystems,

received upper management's attention because they provide

I k cost information about organic depot maintenance to aid in

managing the Depot Maintenance Services Branch of the Air

Force Industrial Fund (DMS, AFIF). Because of this

attention, G072A MMSIP, which is a subsystem of MMSEP, is

supposed to be one of the better documented systems at

- AFLC (Ref 51).

However, it was difficult to extract various

data/information because the documentation either did not

provide the information, or did not clearly identify the

data. Now this point is critical in considering

110

establishing Software Quality Metrics and the Automated

Measurement Tool. Though the format was in compliance with

regulations, the availability of key information wes not

made readily apparent.

To insure a quality product, the documentation cf that

software must provide key information related to the

desired quality attributes. It is an organizational

decision to determine the placement of the informaticn into

specific documents.

To aid developers in documenting a software system's

reliability and maintainability, a checklist of standards

has been developed for each phase of the SDLC. These

checklists provide goal-directed documentation procedures

because developers are aware of the specific info-mation

requirements, not just format.

Application for Checklists with SQM

If the development team were to use the checklists in

this chapter with existing Question Sets listed in AFLC's

Project Manager's Handbook (Working Copy), then it would be

combining software-oriented requirements of the checklists

with the user or management-oriented requirements, of the

Question Sets. To demonstrate the uses of the checklists

and S)M for the G072A MMSIP, one must consider what would

have happened. Thi3 is easiest to vistializ- by applying

the model developed in Chapter V to illustrate defi,-iencies

in current development practices. Because the AMT is not

yet available to AFLC, it was infeasible to collect module

Ill

level information. Therefore, it is only possible to

illustrate the first two phases of the SDLC.

Conceptual Phase. At the beginning of the Conceptual

Phase several documents were generated to reflect the

requirements of the user. The Environmental

Assessment/Statement accompanied the Data Automation

Requirement (DAR) through the decision-making process to

HQ USAF. It was during this initial phase that the

end-user identified the system characteristics. It was

known that the system would have a long life cycle and that

real time application was needed. Because maintainability

had become a command level requirement (Ref 89), it was

easy to identify it as a required software factor.

However, there was no further definition of software

attributes.

By using the step-wise development from system

characteristics to software attributes, depicted earlier in

Figure 9 on page 82, AFLC's project management could have

further definitized system requirements. Moreover, il

could have specified a Reliability rating and a

Maintainability rating as shown in Table XIX on page 85.

I This could have provided up-front criteria on which to base

final acceptance of the system during the testing phase.

This failure to provide software-oriented requirements

meant that, at the time of the Systems Requirements

Review (SRR), the system developers were unable to assess

the system's reliability and maintainability. If the SQM

112

worksheets would have been applied at that time, only the

items which corresponded to Computer Program Configuration

Items (CPCI) would have been satisfied. For example, the

description of the flow of processing, and all decision

points in that flow, was provided under CM, however, items

relating to error tolerance were not even addressed; so

there was a gap in current procedures under CM.

This gathering of data would complete the scanning

phase (system) of the Requirements Analysis shown in

Figure 11 on page 93. The immediate need for a checklist

can now be seen as a way to resolve the inconsistencies

characterizing current documentation requirements under CM

to that of a more desired development effort.

Therefore, to enhance the Question Sets in the Project

Manager's Handbook and the procedures under CM, a checklist

has been developed that will make system designers aware of

items that are present in reliable and maintainable systems

during the Conceptual Phase. At the beginning of the

Requirements Analysis, system designers should be given

this checklist to insure that:

* 1. Requirements are itemized so that the various
functions to be performed (their input and

outputs) are clearly delineated;

2. All data references are defined;

3. All defined functions are justified;

4. All referenced functions are defined;

5. All data referenced are used;

6. A description is provided for the flow of
processing and all decision points in
that flow;

113

7. All problem reports, related to the requirements
are recorded and closed (resolved) prior
to the System Requirements Review (SRR);

8. An error analysis has been performed and budgeted
to functions;

9. There are definitive statements about the accuracy
requirements for inputs, outputs, processing,
and constants;

10. There are definitive statements of the error
tolerance of input data;

11. There are definitive statements of the requirements
for recovery from: (1) computational
failures, (2) hardware faults, and (3) device
errors.

Only after this additional data has been gathered can the

organizing system provide adequate information to the

decision system. Without this additional data, a decision

should not have been made to continue on to the next phase

of development, for the Requirements Analysis was truly

incomplete.

Design Phase. However, the development effort did

continue into the Design (Definition through Detail Design)

Phase. Again, the only data that could be gathered on the

worksheets by the scanning system was that which

corresponded to CPCI's.

The following checklist has been developed to fill this

gap of information requirements. This information should

appear in the draft of the user's manual. prior to

beginning the Design Phase, system developers should insure

that:

114

1. There is a matrix relating itemized requirements
to modules which implement those
requirements ;

2. All major fun.-tions are identified, defined, and
used;

3. All interfaces between functions are defined;

4. All problem report. are resolved;

5. A profile of the number of problem reports is
"broken-out" by the following types--
Computational, Logic, I/O, Data Handling,
OS/System Support, Configuration,
Routine/Routine Interface, Tape Processing,
User interface, Data base interface, User
requested changes, Preset data, Global
variable definition, Recurrent errors,
Documentation, Requirement compliance,
Operator, Questions, Hardware;

6. Math library routines to be used heve been checked
for sufficiency with regard to accuracy
requirements;

7.--.Concurrent processing is centrally controlled;

8. All error conditions a-e reported by the system,
and determine how many of these errors are
automatically fixed or bypassed and allow
processing to continue, and how many require
operator intervention;

9. Provisions for recovery from hardware faults and
device errors is provided;

10. A system hierarchy is provided, identifying all
modules in the system;

11. All modules and duplicate functions are
identified;

12. All modules called by more than one other module
are identified;

13. The constants used in the system are defined only
once.

For each module, system developers must check to insure

that the followinq guidelines are contained within the

system/subsystem/program specifications and test plan

115

dccumentation:

1. Inputs, outputes, and functions being performed
can be clearly identitied;

2. A minimal number of data references are defined,
computed or obtained from external sources;

3. All conditions and processing are defined for each
decision point;

4. The type of problem report is being identified
within a profile of problem reports;

5. When an error condition is deteted, a message is
passed to the calling module;

6. Numerical techniques used in algorithms are
analyzed with regards to accuracy require-
ments;

7. v.lues of input ranges are tested;

8. Conflicting requests and illegal combinations
are identified and checked;

9. There is a check to see if all necessary data is

available before processing begins;

10. All input is checked, reporting all errors before
processing begins;

11. Loop and multiple transfer index parameters range

are tested before use;

12. Subscripts range are tested before use;

13. Outputs are checked for reasonableness before
processing continues;

14. The number of decision/subdecision points is known;

15. The number of conditional and anconditional
branches is identified;

16. The module is not dependent on information of
prior processing;

17. Any limitations of the processing that are
performed by the module are identified;

18. The number of entrances into modules and number
of exits from modules are known;

116

19. The number of references to system library
routines, utilities or other system
provided facilities is known;

20. The number of I/O actions and the number of
calling sequence parameters, which are
control variable, is known;

21. Input is passed as calling sequence parameters;

22. Output is passed back to calling module;

23. Control is returned to calling module;

24. Temporary storage is not shared with other
modules;

25. A module does not mix input, output, and
processing functions in the same module;

26. The number of machine dependent functions that are

performed is minimized;

27. Processing data volume/value is limited;

28. A common, standard subset of a programming
language is used;

If developers insured that the system exhibited these

traits (specified in the checklists), then they would be

better assured of achieving a more reli'ible and

maintainable system. The organizing system would update

the AMT database, derive the metric scores, and generate

the reports. This would sorve as a more quantitative basis

on which to make a decision about the progress of the

. system development.

At this point it becanie infeasible to try to collect

module level information because the AMT is not yet

available for AFLC. However, if a checklist is provided to

programmers, then it will encourage goal-directpd

programming. Therefore, the software is more apt to

117

__________________________ ~ '

exhibit those desired quality traits (Ref 27). Before

coding, programmers should be given a checklist specifying

the following conditions for each module which contributes

to reliable and maintainable software:

1. Machine level language statements should be

minimized;

2. Unconditional branching should be minimized;

3. A specified structured language will be used;

4. GOTO's should be avoided;

5. Prologue comments should be provided which
contain information about the function,
author, version number, date, inputs,
outputs, assumptions, and limitations of
the modules;

6. There should be a crmment which indicates which
itemized requirement is satisfied by the
module;

7. All decision points and transfers of control

should be commented;

8. Machine language code must be commented;

9. All non-standard HOL statements must be
commented;

10. All declared variables must be described by
comments

11. All variable names (mnemonics) must be
descriptive of the physical or functional
property they represent;

12. Code should be logically blocked and indented;

13. No line should contain more than one statement;

14. Inputs should be range tested;

15. Possible conflicts or illegal roinhinatiions in
inputs should be checked;

16. Parameters which are passed to or from other
modoiles must be defined in th - module;

118

17. Global variables must be used consistently with

respect to units or type;

18. Each variable should be used for one purpose;

19. Loop and multiple transfer index parameters must
be range tested before use;

20. Subscript values are range tested before use;

21. When an error condition occurs, information must
be passed to the calling module;

22. Results of a computation must be checked before
outputing or processing continues;

23. During execution, outputs must be within accuracy
tolerances.

By including these checklists as a supplement to

development procedures, management can do much to improve

the efficiency and effectiveness of the SQA program that

uses the ANT because these checklists correspond to the

requirements fur the metric worksheets. By obtaining item

information from the worksheets, which are descriptive in

nature, and developing the checklists to be used before

each SDLC phase, SQM becomes more prescriptive, thus aiding

even more to the delivery of quality software.

Chapter VII summarizes this research effort and makes

recommendations to AFLC/LM concerning its SQA program.

119

CHAPTER VII

THESIS RECOMMENDATIONS: GUIDELINE FOR A SQA PROGRAM

The overall objective of this thesis has been to

provide guidelines to AFLC/LM concerning the way Software

Quality Metrics can be integrated into its SQA program.

Research Summary

Chapter I provided the background information which

identified the difficulties AFLC has experienced during its

attempts to establish a SQA program. It pinpointed

specific symptoms that indicate AFLC lacks a viable SQA

function.

In Chapter II, Software Quality Metrics were presented

as a means to provide a feasible solution to this problem.

The measurement concepts of SQM were shown to complement

other software tools and techniques, and to identify

quality characteristics that these other aids failed to

quantify. The chapter focused on how SQM can be used to

identify software quality requirements.

Chapter III presented the methods used in this thesis

to derive the information needed to make recommendatiors

concerning the development of AFLC/LM's SQA program. It

4 cutlined the research methodology required to lemonstrate

120

the feasibility of incorporating Software Quality Metric:

into AFLC's SQA program.

Chapter IV accomplished the first goal of this research

effort: to determine which measurement tools and techniqueE.

should be used by AFLC/LM in establishing its SQA program.

It concluded that the minimum set of tools are: the

Automated Measurement Tool (AMT), Standards, Standards

Analyzer, Dynamic Analyzer, Language Processor and a Test:

Bed, and that the minimum set of techniques should be:

Software Quality Metrics (SQM), Reviewing, Auditing, Design

Inspections, Walk-Throughs and Standardization. By

including SQM and the AMT in this minimum set of tools and

techniques the SQA group will be able to quantitatively

assess software quality. Chapter IV also justified the

employment of a toolsmith within the SQA organization.

Chapter V proposed a systemic model of the software

system development effort that can be used to conceptualize

the specific information requirements of the subsystems

within the phases of the SDLC and thereby accomplished the

second goal of this thesis: to develop a model of the

decision-making process of the software system development

effort that incorporates the application of SQM and which

A illustrates the feasibility of implementing a

quantitatively oriented SQA program at AFLC/LM. As a

result of this modeling effort, software development has

been envisioned as a controlled management process in which

control is exercised through reviews, status reporting, and

121

software products delivered during the SDLC. Currently,

the major emphasis of the control function is to evaluat,

the schedule and cost performance and to determine the

functional correctness of the software being developed.

The concept under3ying software quality metrics is to us(.

these control vehicles to provide an indication (anct

therefore a mechanism of control) of the quality of the

software product to be delivered (Ref 17).

Chapter VI focused on accomplishing the third goal: to

demonstrate how the SQM concepts can be applied at AFLC/LM.

It achieved this by providing checklists which can be usecL

prior to each phase of the SDLC. The intent of the

checklists is to emphasize the fact that the metrics, which

establish the quantitative assessment of software quality,

are based on the availability of key information which

exhibits the characteristics of the software.

It has been found that the costs throughout the total

life cycle are more affected by the characteristics of the

software system than by the mission-oriented functions

performed by the software system (Ref 35). Large software

systems have sometimes proven untestable, unmodifiable, and

largely unusable by operations personnel because of the

characteristics of the software (Ref 36).

Research Recommendations

It is a function of the software quality assurance

program to insure that the characteristics of the software

system satisfy the requirements of the end-user. However,

122

by solely relying upon its current SQA tools and

techniques, AFLC/LM cannot provide an indication of the

quality of the software it delivers. Therefore, based or

the findings of this research effort, AFLC/LM shouYI.

incorporate the concepts of Software Quality Metrics (SQM

into its software development effort. To accomplish thi.;

AFLC should:

1. Acquire the Automated Measurement Tool (AMT) which

is needed to operationalize the SQM methodology. To obtain

the tool, a request to Joe Cavano (Autovon 587-7834) at the,

Rome Air Development Center (RADC) should be made to

acquire the software and tapes for the AMT. Also)

information concerning implementation, testing and

validation should be acquired.

2. Develop checklists, similar to the ones irn

Chapter VI, to be used by software developers to insure

that they are aware of the software traits which affect all

factors of software quality. These checklists should be

included as a supplement to the Project Manager's Handbook,

which is now being developed (Ref 89). As a minimum, the

checklists should include coverage of all questions in the

metric worksheets in Appendix A.

3. Contract with General Electric's Command and

Information Systems Division at Sunnyvale, CA:

a) to train SQA personnel in procedures to fully

utilize the SOM methodology and the Automated Measurement

Tool (AMT);

123

b) to establish standards and procedures that can

be used by the SQA program in assessing the quality of

software products, and

c) to interface existing software tools at AFLC to

the AMT.

4. Assign an individual in the SQA program to be

responsible for the development and maintenance of written

procedures and a tool library. This toolsmith should be

familiar with other software tools and be able to determine

(through procedures in Chapter IV) if acquisition of the

tool is justified.

The nature of the framework for Software Quality

Metrics allows an upper level application of the SQM

concepts without the acquisition of the AMT. The

structured (step-wise) procedures, discussed in Chapter II

and depicted in Figure 9, provide the ability to specify

system requirements in software-oriented terms. This

provides goal-directed design and implementacion which has

been shown to improve the quality of the end product. This

fact alone means AFLC/LM now has the capability to

significantly impact the quality of its sotftwar--e systems

before development begins.

Once it acquires the AMT, AFLC can expand its

capability to monitor and control the software development

effort. The AMr will serve as the core for a Decision

Support System to provide management with an objective

124

I,

assessment of the system development. By integrating other

software tools with the AMT, AFLC can effectively automate

the monitoring function of the SDLC, thus reducing the

manpower requirements for its SQA program.

In conclusion, by acquiring the Automated Measurement

Tool to support the application of Software Quality

Metrics, AFLC/LM will significantly improve the quality of

the software systems it develops because it will be able to

quantitatively mea:3ure the quality of the software system

as it is being developed. There can be no justification

for not acquiring this assessment capability.

4.-.

125

REFER ENCES

REFERENCES USED

1. Proceedings of the 1973 Symposium on the High Cost of
Software, September 1973.

2. "Findings and Recommendations of the Joint Logistics
Commander," Software Reliability Working Group,
November 1975.

3. "Government/Industry Software Sizing and Costing
Workshop," Summary Notes, USAFESD, October 1974.

4. Myers, G.J. "Characteristics of Composite Design,"
DATAMATION, September 1973.

5. Myers, W. "The Need for Software Engineerinq,"
Computer, February 1973.

6. Cooper, J. and M. Fisher, ed. Software Quality
Management, New York: Petrocelli Books, Inc., 1979.

7. Reifer, D.J. "Tutorial: Software Management," IEEE
Catalog No. EHO 146-1, 1979.

8. Freeman, P. & A.I. Wasserman. "Tutorial on Software
Design Techniques," IEEE Catalog No EHO 161-0, 1980.

9. Cho, C. An Introduction to Software Quality Control,
New York: John Wiley and Sons, 1980.

10. Biggs, C.L., E. Birks, and W. Atkins. Managing the
Systems Development Process, Englewood Cliffs, N.J.:
Prentice Hall, Inc., 1980.

11. Fohrman, W.G. "Observations on Configuration
Management," Software Configuration Management, IEEE
Catalog No EHO 169-3, 1980.

12. Jensen, R.H. & C.C. Jonies. Software Engin(-ering,
Englewood Cliffs, N.J.: Prentice Hall, Inc., 1979.

13. Ruby, R.J., J.A. Dana, and P. Biche. "Quantitative
Aspects of Software Validation," IEEE Transactions on
Software Engineering, June 1975.

14. Ruby, R.J. "Software/System Acquisition," Graduate
Lecture Notes at AFIT for EE 5.45, Sept;mber, 1981.

127

,~m.

I
15. Reifer, D.J. "Software Quality Assurance Tools and

Techniques," Software Quality Management, New York:
Petrocelli Books, Inc., 1979.

16. McCall, J.A. "An Assessment of Current Software
Metric Research," EASCON-80 Presentation,
September, 1980.

17. Richards, P.K., G. Walters, & J.A. McCall. "Factors
in Software Quality, " Three volumes, NTIS,
AD-A049-014, AD-A049-015, AD-A049-055., November 1977.

18. Cavano, J. & J. McCall. "A Framework for the Measure-
ment of Software Quality," Proceedings, Software
Quality Assurance Workshop, November 1978.

19. Boehm, B., et al. "Quantitative Evaluation of
Software Quality," Proceedings, 2nd International
Conference of Software Engineering, October 1976.

2C. Rubey, R. & R. Hartwick. "Quantitative Measurement of
Program Quality," Proceedings, 23rd National
Conference, ACM, 1968.

21. Kosarajo, S. and H. Ledgard. "Concepts in Quality

Design," NBS Technical Note 842, August 1974.

22. Boehm, B., et al. Characteristics of Software Quality:
New York: North Holland Publishing Co., 1978.

23. McCall, J.A. and M.T. Matsumoto. Software Quality
Metrics Enhancements, Vol. I,
Contract # F30602-78-C-0216, September 1979.

24. Walters, G.F. & J.A. McCall. "The Development of
Metrics for Software Reliability and Maintainability,"
Proceedings, Annual Reliability and Maintainability
Symposium, January 1978.

25. Reifer, D. "Toward Specifying Software Properties,"
IFIP Conference on Modeling of Environmental Systems,
Tokyo, Japan, April 1976.

26. Gilb, T. Software Metrics, Cambridge, Mass: Winthrop
Publishers, Inc., 1976.

27. Weinberg, G. "The Psychology of Improved Progra.ming
Performance," DATAMATION, November 1972.

28. Matsumoto, M. & J. McCall. "Softwace Quality
Measurement Manual," RADC-TR-80-109, Vol. TI,
April 1980.

29. Fagan, M.E. "Design and Code Inspections Lo Reduce
Errors in Program Development," IBM systens Journal,
Vol. 16, No. 3, 1976.

1284"x ' ~
-ol 16 ' N o ,, 22

30. Myer, G. "A controlled experiment in program testing
and code walk-throughs/inspections," Communications
of the ACM, Vol. 21, September 1978.

31. Walters, G.F. "Application of Metrics to Predict
Software Quality," MIDCON SQA Program, 1979.

32. Boehm, B.W. "Software and Its Impact: A Quantitative
Approach," Datamation, April 1973.

33. Elshoff, J.L. "Measuring Commercial PL/l Programs
Using Halstead's Criteria," SIGPLAN Notices, May 1976.

34. Kosarajo, S.R. and H.F. Ledgard. "Concepts in Quality
Software Design," NBS Technical Note 842, August 1974.

35. Fitzsimmons, A. and T. Love. "A Survey of Software
Practitioners to Identify Critical Factors in the
Software Development Process," GE TIS 761SPO03,
December 1976.

36. Millstein, R.E., et al. "On Program Transferability,"
Applied Data Research, Inc., RADC-TR-70-217,
November 1970.

37. "Quality Assurance," Department of Defense
Directive 4155.1 (1972), Enclosure 2.

38. Woodward, Richard. Interviews from April 193l to
February 1982 in AFLC/LM, Wright-Patterson AFB, Od.

39. Fisher, M.J., et al. "Software Quality Assurance and
Reliability as it Relates to Configuration Management,"
Report of the Eleventh Annual EIA Data and
Configuration Management Workshop, Panel No. 7,
San Diego, CA, October 17-21, 1977.

40. Ruby, Raymond J. "Software Quality Assurance and
Verification and Validation," Seminar Document from
the DPMA symposium, April 23-24, 1981.

41. McCabe, Thomas J. and Frederick Stern. "Use ot
Metrics to Measure Quality," Conference Proceedings
from the DPMA National Symposium on Eff-ctive Methods
of EDP Quality Assurance, Chicago, IL.,
April 1-3, 1981.

42. Stratton, Cloyd D. Interviews from Sept-ember to
November, 1981 in AFLC/LM, Wright-Patterson AFB, OH.

43. Rullo, Thomas A. Advances in Computer Proqrammina
Management, Vol. 1, Philadelphia:
Heyden & Son, Inc., 1980.

129
__ _ _ _ _ _-a--i

44. Ruby, Raymond L. "Software Quality Assurance,"
Technical Session lA, Air Force Institute of
Technology (AFIT) Association of Graduates (AOG)
Biennial Symposium, AFIT/Department of Electrical
Engineering, Wright-Patterson AFB, OH,
November 18, 1981.

45. Kerzner, Harold. Project Management: A Systems
Approach to Planning, Scheduling, and Controlling,
New York: Van Nostrand Reinhold Company, 1979.

46. DoD Standard 7935.1-S, Automated Data Systems Docu-
mentation Standards, Government Printing Office,
Washington, D.C., September 13, 1977.

47. AFR 300-15, Automated Data System Project Management,
U.S. Government Printing Office, January 16, 1978.

48. Tinsley, Jack. Interviews at AFLC/LM about Configura-
tion Management, Program Management, and Application
of Standards, August - December 1981.

49. Schoderbek, C.G., et al. Management Systems:
Conceptual Considerations, Dallas: Business Publica-
tions, Inc., 1980.

50. Bryan, William, et al. "Tutorial: Software
Configuration Management," IEEE Catalog No. EHO 169-3,
1980.

51. Markham, Dave and James McCall. Two Days of Interviews
on General Electric's Software Quality Metrics,
October 29-30, 1981.

52. Whited, Jon A. "Management Control Practices for
Software Quality," Software Quality Management,
New York: Pekrocelli Books, Inc., 1979.

53. Thayer, L. Communication and Communication Systems,
Homewood, IL: Richard D. Irwin, Inc., 1978.

54. Simon, H.A. The Sciences of the Artificial,
.'1 Cambridge, Mass.: The MIT Press, 1969.

55. Wood, Dennis L. "Department of Defense Software
Quality Requirements," Software Quality Management,
New York: Petrocelli Books, Inc., 1979.

56. Gustafson & Kerr. "Some Practical Experience with a

Software Quality Assurance Program," Communications
of the ACM, January 1982.

130

1j3

57. Simon, H.A. The Shape of Automation for Men andi
, New York: Harper Torchbooks, The Academy

Library, 1965.

58. Clark, Thomas. "Logistics Decision Support Systems,"
LM 6.15, Lecture Notes for course in Air Force
Institute of Technology, School of Systems and
Logistics, 1981.

59. Casey, J.K. "The Changing Role of the In-House
Computer Application Software Shop,"
GE TIS #74AEG195, February 1974.

60. Dennis, J.B., G. Goos, J. Poole, C.C. Gotlieb, et al.
"Advanced Course on Software Engineering,"
Springer-Verlag, New York, 1970.

61. Lieblein, E. "Computer Software: Problems and
Possible Solutions," CENTACS USAECOM Memorandum,
November 7, 1972.

62. Kernighan, B. and P. Plauger. The Elements of
Pro grAmming Style, McGraw-Hill, 1974.

63. Culpepper, L.M. "A System for Reliable Engineering
Software," International Conference on Reliable
Software, 1975.

64. Hague, S.J. and B. Ford. "Portability-Prediction
and Correction," Software Practices & Experience,
Vol. 6, 61-69, 1976.

65. Kosy, D. "Air Force Command and Control Information
Processing in the 1980s: Trends in Software
Technology," Rand, June 1974.

66. Mealy, G.H., D.J. Farber, E.E. Morehoff, and Sattley.
"Program Transferability Study," RADC, November 1968.

67. Edwards, N.P.. "The Effect of Certain Modular Design
Principles on Testability," International Conference
on Reliable Software, 1975.

68. Liskov, B.H. "Guidelines for the Design and
Implementation of Reliable Software Systems," MITRE
Report 2345, February 1973.

69. Light, W. "Software Reliability/Quality Assurance
Practices," Briefing given at AIAA Software Management
Conferences, 1976.

70. Pathway Program. Product Quality Assurance for
Shipboard Installed Computer Programs, Naval Sea
Systems Command, April 1976.

131

71. Goodenough, J. "Exception Handling Design Issues,"
SIGPLAN Notices, July 1975.

72. Richards, P., et al. "Simulation Data Processing
Study: Language and Operating System Selection,"
GE TIS 74CIS09, June 1974.

73. Marshall, S., R.E. Millstein, and K. Sattley. "On
Program Transferability," Applied Data Research, Inc.,
RADC-TR-70-217, November 1970.

74. "Support of Air Force Automatic Data Processing
Requirements through the 1980's," SADPR-85, July 1973.

75. Myers, G.J. Reliable Software through Composite
Design, Petrocelli/Charter, 1975.

76. Myers, G.J. Software Reliability: Principles and
Practices, John Wiley & Sons, New York, 1976.

77. "SAMSO Program Management Plan Computer Program Test
and Evaluation," February 1975.

78. Thayer, T.A., W.L. Hetrick, M. Lipow, and G.R. Craig.
"Software Reliability Study," RADC TR-76-238,
August 1976.

79. "U.S. Army Integrated Software Research and
Development Program," USACSC, January 1975.

80. Schonfelder, J.L. "The Production of Special Function
Routines for a Multi-Machine Library," Software-
Practice and Experience, Vol. 6, 1976.

81. Whipple, L. "AFAL Operational Software Concept
Development Program," Briefing given at Software
Subpanel, Joint Deputies for Laboratories Committee,
February 12, 1975.

82. Wulf, W.A. "Report of Workshop 3 - Programming
Methodology," Proceedings of a Symposium on the High
Cost of Software, September 1973.

A 83. Yourdon, E. Techniques of Program Stricture and
Design, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1975.

84. McCall J. and Markham. "Automation of Quality
Metrics: Final Report," Contract # F30602-79-C-0267,
December, 1981.

85. AFR 300-12, "Procedures for Managing Automatic Data
Processing Systems (ADPS), U.S. Government Printing
Office, September, 1977.

132

86. MIL-S-52779A, *Software Quality Assurance Program
Requirements," U.S. Government Printing Office,
September, 1979.

87. TRW, Airborn Systems Software Acquisition Engineering
Guidebook for Quality Assurance, Report
No. 30323-6005-TU-00, November 1977.

88. Markham, D., et al. "The Automated Measurement of
Software Quality," Paper submitted to COMSAC 81,
June 1981.

89. "Project Manager's Handbook," Working Copy, for
AFLC's Software Development, Undated.

90. Reifer, Donald J. and Stephen Trattner. "A Glossary
of Software Tools and Techniques," Computer,
July 1977.

91. Reynolds, C. and R.T. Yeh. "Induction as the Basis
for Program Verification," IEEE Transactions on
Software Engineering, Vol. sE-2, No. 4, December 1976.

92. Good, D.I., R.L. London, and W.W. Bledsoe. "An Inter-
Active Verification System," Proceedings of the
International Conference on Reliable Software, IEEE,
April 1975.

93. Tsui, Frank and Lew Priven. "Implementation of
Quality Control in Software Development," Proceedings
of the 1976 National Computer Conference,
AFIPS Press, 1976.

94. Miller, Edward F., Jr. "Program Testing: Art Meets
Theory," Computer, July 1977.

95. Howden, William E. "Methodology for the Generation
of Program Test Data," IEEE Transactions on Software
Engineering, Vol. SE-3, 1977.

96. Fairley, Richard E. "Tutorial: Static Analysis and
Dynamic Testing of Computer Software," Computer,
April 1978.

" 97. Reifer, Donald and Robert L. Ettenger. Test Tools:
Are They a Cure-all? SAMSO-TR-75-13, October 15, 1974.

98. Freeman, Peter. "Toward Improved Review of Software
Designs," Proceedings of the 1975 National Computer
Conference, AFIPS Press, 1975.

99. Bratman, Harvey and Marcia C. Finfer. Software
Acquisition Management Guidebook: Verification,
ESD-TR-77-263, August 1977.

133

100. Reifer, Donald J. A Structured Approach to Modeling
Computer Systems, SAMSO-TR-75-3, August 30, 1974.

101. MIL-STD-483 (USAF), Configuration Management Practices
for Systems, Equipment, Munitions and Computer
Programs, June 1971.

102. National Bureau of Standards, Guidelines for
Documentation of Computer Programs and Automated Data
Systems, Federal Information Processing Standards
Publication 38, February 1976.

103. MIL-STD-1589 (USAF), JOVIAL (J73/I),
February 28, 1977.

104. "Draft Proposed ANS FORTRAN, BSR X3.9, X3J3/76,"
SIGPLAN Notices, Vol. II, No. 3, March 1976.

105. Stevens, W.P., G.J. Meyers, and L.L. Constantine.
"Structured Design," IBM Systems Journal, No. 2, 1974.

106. Peters, L.J. and L.L. Trip. "Comparing Software
Design Methodologies," Datamation, November 1977.

107. Structured Programming Series, USAF Rome Air
Development Center, Vols. 1-15, July 1975.
DDC Accession Numbers Follows:
"Programming Language Standards," AD-A016 771.
"Pre-Compiler Specifications," AD-A018 046.
"Pre-Compiler Program Documentation," AD-A013 255.
"Data Structuring," AD-A015 794.
"Program Support Library Requirements," AD-A003 339.
"Program .1support Library Program Specifications,"
AD-A007 '96.
"Documentation Standards," AD-A016 414.
"Program Design Study," AD-A016 415.
"Management Data Collection and Reporting,"
AD-A008 640.

"Chief Programmer Team Operations," AD-A008 861.
"Estimating Software Resource Requirements,"
AD-A016 416.
"Training Materials," AD-A026 947.
"Software Tool Impact," AD-A015 795.
"Validation and Verification," AD-A016 668.
"Final Report," AD-A020 858.

108. Darringer, John A. and James C. King. "Applications
of Symbolic Execution to Program Testing," Computer,
April 1978.

109. Howden, W.E. "Symbolic Testing and the DISSECT
Symbolic Evaluation System," IEEE Transaction on
Software Engineering, Vol. SE-3, 1977.

134

110. Waldstein, N.S. The Walk-Thru-A Method of
Specification, Design and Review, IBM Corporation
Technical Report TR 00. 2536, June 1974.

111. Logicon Technical Staff, Management Guide to Avionics
Software Acquisition: Volume IV -- Technical Aspects
Relative to Software Acquisition, ASD-TR-76.11,
Vol. IV, June 1976.

112. Hoffman, R.H. "NASA/Johnson Space Center Approach
to Automated Test Data Generation," Proceedings of
Computer Science and Statistics: Eighth Annual
Symposium on the Interface, available from UCLA,
February 1975.

113. Panzl, David J. "Automatic Software Test Drivers,"
Computer, April 1978.

114. Trattner, S. Tools for Analysis of Software Security,
Aerospace Corporation, ATR-77 2740-1,
October 15, 1976.

115. Landes, Michael. "Consistency Checker," Summary,
Presentation at the International DOD/Industry
Conference on Software Verification and Validation,
Rome Air Development Center, August 1976.

116. Callender, E.D., M. Feliciano, and L.D. Jennings.
SAMSO Computer Language and Software Development
Environment Requirements, SAMSO-TR-290, 1975.

117. Felty, James L. and Martin S. Roth. Software
Support Tools, Intermetrics Inc., IR-204-2,
October 15, 1976.

118. Couger, J. Daniel. "Evaluation of Business System
Analysis Techniques," Computing Surveys, Vol. 5,
No. 3, September 1973.

119. DeWolf, J. Barton and Jonathan Wexler. "Approaches
to Software Verification with Emphasis on Real-
Time Applications," Proceedings of theA AIAA/NASA/IEEE/ACM Computers in Aerospace Conference,
October 31 - November 2, 1977.

120. Whipple, L.K. and M.A. Pitts. User's Appraisal of
an Automated Program Verification Aid,
AFAL-TR-75-242, December 1975.

121. Spanbauer, Robert N. (USAF). "The F16 Software
Development Program," Proceedings of Conference on
Managing the Development of Weapon System Software,
Maxwell Air Force Base, Alabama, May 12-13, 1976.

122. Nassi, I. and B. Schneiderman. "Flowchart Techniques

135

for Structured Programming," SIGPLAh Notices,
August 1973.

123. Reifer, Donald J. Interim Report on the Aids
Inventory Project, SAMSO-TR-74-184, July 16, 1975.

124. Nutt, Gary J. "Tutorial: Computer System Monitors,"
Computer, November 1975.

125. Highland, Harold J. (ed.) Computer Performance
Evaluation, U.S. Department of Commerce, National
Bureau of Standards, Special Publication 401,
September 1974.

126. Baum, J.D. and J.B. DiStefano. "Avionics In-Flight
System/Software Test Tool -- Anomaly Trace, "

Proceedings of the Aeronautical Systems Software
Workshop, Dayton, Ohio, April 2-4, 1974.

127. Hamilton, M. and S. Zeldin. "Higher Order Software --

A Methodology for Defining Software," IEEE Trans-
actions on Software Engineering, Vol. SE-2, No. 1,
March 1976.

128. Bell, Thomas E., David C. Bixler, and
Margaret E. Dyer. "An Extendable Approach to
Computer-Aided Software Requirements Engineering,"
IEEE Transactions on Software Engineering, Vol. SE-3,
No. 1, January 1977.

129. Caine, Stephen H. and E. Kent Gordon. "PDL -- A Tool
for Software Design," Proceedings of the 1975
National Computer Conference, AFIPS Press, 1975.

130. Baker, F. Terry. "Structured Programming in a

Production Programming Environment," IEEE
Transactions on Software Engineering, Vol. SE-I,
No. 2, June 1975.

131. Poseidon MK88 Fire Control System Computer Program
Verification and Validation Techniques Study,
Volume III, Ultrasystems Inc., Newport Beach, CA,
November 1973.

132. Malcolm, Donald G. "Cost-Effective Management
Information Systems," Management Information Systems
Short Course Notes, Engineering 819.39, University
of California at Los Angeles, May 1978.

133. Hardy, I. Trotter, Belkis Leong-Hong, and
Dennis W. Fife. Software Tools: A Building Block
Approach, U.S. Department of Commerce, National
Bureau of Standards, Special Publication 500-14,
August 1977.

136

134. Teichroew, D. and E.A. Hershey, III. "PSL/PSA:
A Computer-Aided Technique for Structured Documenta-
tion and Analysis of Information Processing,"

IEEE Transactions on Software Engineering, Vol. SE,-3,
No. 1, January 1977.

135. Basili, Victor R. "A Panel Session - User
Experience with the New Software Methods," Proceedings
of the 1978 National Computer Conference,
AFIPS Press, 1978.

136. Ramamoorthy, C.V. and K.H. Kim. "Software Monitors
Aiding Systematic Testing and Their Optional
Placement," Proceedings of the 1st National
Conference on Software Engineering, IEEE Catalog
No. 75CH0992-8C, September 1975.

137. Herring, F.P. and C.J. Mabee. Survey of Support
Software for Operational Flight Programs and
Avionics Integration Support Facility Software,
TRW Systems, Report 28675-6232-RU-00, May 1977.

138. Chambers, T.V. "Shuttle Avionics Integration
Laboratory," Proceedings of the AIAA/NASA/IEEE/ACM
Computers in Aerospace Conference, October 31 -
November 2, 1977.

139. Hollowich, Michael and Frank Borasz. "The Software
Design & Verification System (SDVS), An Integrated
Set of Software Development and Management Tools,"
NAECON '76 Record, IEEE Catalog No. 76CH1082-7
NAECON, 1976.

140. Jelinski, P.B., et al. "Metrics of Software Quality,"
DTIC Technical Report # ADA093788, November 1980.

141. wConfiguration Management of Software Programs,"
A Continuing Engineering Education Program at
George Washington University, November 1978.

142. Brooks, Robert. Interviews at AFLC/LMX about
Configuration Management, Project Coordination, and
G072A MMSLP, October -December 1981.

137

2-~

APPENDIX A

METRIC W'ORKSHEETS

(Refs 17,23)

Kv

MEIIC WOIRKSHEET I)ISTEM DATE _

REQUIRMkNTS ANALYSIS/SYSTEM LtVLL NAML INSPECTOR.

1. LOMPLEIE;.ESS (1UUPECTNESS. RELIABILITY)

1 Number of major functions identified (equivalent to CPCI). CP.I

2 Are req4uirements Itemized so that the vjrsous functions to be performed, their

inputs and outputs, are clearly delineated? CP.I(I)

3 Number of major data references. CP.1(2)

4. How many of these data references are not defined? CP.1(2)

5. How many defined functions are not used? CP.l(3)

6 Now many referenced functions are not defined? CP.l(4)

7. Now many data references are not used? CP.I(?)

8. Now many referenced data references are not defined? CP.1(6)

9. Is the flow of processing and all decision points in that flow described? CP.l(5 Y N
10. How many problem reports related to the requirements have been recorded? CP.1(7)-

11 How many of those problem reports have been closed (resolved)? CP.1(7)

II. PRECISION (RELIABILITY)

I. Has an error analysis been performed and budgeted to functions? AY.I(I) Y N

2. Are there definitive statements of the accuracy requirements for Inputs,

outputs, processing, and constants? AY.l(2) Y N

3. Are there definitive statements of the error tolerance of input data? ET.2(l) Y N

4. Are there definitive statements of the requirements for recovery from

computational failures? ET.3(l) Y N
5. Is there a definitive statement of the requirement for recovery from hardware

faults? ET.4(l) Y N

6. Is there a definitive statement of the requirements for recovery from device

errors? E.(l) N

I[I. SECURITY (INTEGRITY)

I Is there a definitive statement of the requirements for user Input/output Y N
access controls? AC.1(1)

2 Is there a definitive statement of the requirements for data base access N
controls' AC I(2)

3. Is there a definitive statement of the requirements for memory protection V N
across tasks' AC.1(3) I

4 Is there a defnitive statement of the requirements for rcordina and Y N
r-portinq access to system? AA.i(11

5 Is there a d,,finitive statement of th reouirements for immediate Y N
indication of access violation" AA.,,)

L.39

MLIRIC WuSHEETt I vSTEM DATE
WLQUIRLMENTS ANALYSIS/>ViSTLM LEVIL NAME_ INSPECTOR:

IV HUMAN INTERFACE kUSABILITY

I. Are all steps in the operation described toperations concept)? OP.l(l) Y N

2. Are ai error conditions to be reported tu uperdtor/user identified and

tne responses described? OP.I(2) Y N

3. Is there a Statement of the requirement fur the capability to interrupt

operation, obtain status, modify, and continue processing? OP.l(3) Y N

4. Is there a definitive statement of requirements for optional input mod'a? Y NCm. 16).
S. Is there a definitive statement of requirements for optional output media? Y N

CM.2(7)
6. Is there a definitive statement of requirements for selective output N

control? CM.2(l)

V. PERFORMANCE (EFFICIENCY)

1. Have performance requirements (storage and run time) been identified for
the functions to be performed? EE.l Y N

VI. SYSTEM INTERFACES (INTEROPERABILITY)

I. Is there a definitive statimmnt of the requirements for communication with

other systems? CC.1(1) Y N

Z. Is there a definitive statement of the requirements for standard data

representations for communication with other systems? 0C.l(l) Y N

VII. INSPECTOR'S COMMENTS

Make any general or specific coements that relate to the quality observed while

applying this checklist.

1

1.40

METRIC WORKSHEET 2a SYSTEM DATE.

DESIGN/SYSTEM LEVEL NAME; INSPECTOR:_________

1. COMPLETENESS (CORRECTNESS. RELIABILITY)

1. Is there a matrix relating itemized requirements to modules wniich implement Y N
those requirements? TR.l

2. How many major functions (CPCIS) are identified? CP.l

3. Now many functions identified are not defined? CP.l(2)

4. Now many defined functions are not used? CP.l(3)

5. Now many interfaces between functions are not defined? CP.l(6)
6. Number of total problem reports recorded? CP.1(7)
7. Number of those reports that have not been closed (resolved?) CP.l(7)

8. Profile of problem reports: (number of following types) a. Computational
__ b. Logic

11.PREISIN (ELIBILTY)c. Input/output
II. PREISIN (ELISILTY)_____ d. Bata handling

1. Nave math library routines to be used been e. OS/System Support
f. Configuration

checked for sufficiency with regards to y ft g Routine/Routine
accuracy requirements? A13)interface

AY~(3)h. Routine/System
2. Is concurrent processing centrally Interface

conrole? E.11)Y N 1. Tape Processing
conroled? ET~~l)J. User interface

3. Now many error conditions are reported k. data base Interface

by the system? ETAl2)Y 1. user requested

4. Now many of those errors are automatically a. Preset data
fixed or bypassed and processing continuqS? definalvition

5. No an, euie prao ET 1(2) dfnto
S.Nw ay.rqur oeatrIteret11]n 2 p. Recurrent errors

6. Are provisions for recovery from hardware q ouettofalt Y N q. Docuimentofalsprovided? ET.4(2) r eurmn

7. Are provisions for recovery from~ device compliance

errors provided? ET.S(2) ' . Oeao
*t. Questions
4 - - u. Hardware
III STRUCTURE (RkLIABILITY, MAINTAINABIL [TY .TESABILITY.

PORTABILITY. REUSABILITY, INTEROPERABILITY)

I Is a hierarchy of system. identifying al! modules in the system provided? Y N

2. Number of Modules 51.1(2) S.0

3 Are there any duptiate functions? S1.1(2) Y N

4 Based on hier~irchy or a call//(dllel matri., how Many modules are called by
more thian)nfe ither nodilIe? rA
S Are-Ih in , nit tI~ s.w in th.' sytpti Jet i mI p ,n N1

........ ..

Pg. 2

OESIGNiSYSTEM LLVEL itLISETR

IV, OPT IMIZATIU4 (L0 ICIENCY)

1. Are stor~,qe requirementls allocated to design? SE.1(1)Y -
2. Are virtudi storage faliities used? SE-1(2) N

;. Is dynamic memory m..nagement used? SE.1(5) N

4. Is a pertormdnce optimizing comnpiler used? SE.1(7) N

S. Is globdi data defined once? CS.2(3) N

6. mave Data Base or files been organized for efficient processing? EE.3(S) V N

7. Is data packing used? EE.2(5) N
8. Number ot overlays EE.2(4)

9. Overlay efficiency - memory allocation EE.2(4)

max overlay size

min overlay size

V. SECURITY (INTEGRITY)

1. Are user Input/Output access controls provided? AC.l(1) X

Z. Are Dats Base access controls provided? AC.l(2)Y
3. Is memory protection across tasks provided? AC.l(3) N

4. Are there provisions for recording and reporting errors? AC.2(l.2) N

VI. SYSTEM INTERFACES (INTEROPERABILITY)

1. How many other systems will this system interface with? CC.l(l)
2. Have protoc I standards been *stablisi-ed? CC.l(2)Y

3. Art they being complied with? CC.1(2) N

4. Number of modules used for Input and output to other system? CC-l(3.4) Y N

S. Has a standard data representation been established or translation

standards between representations been established? OC.l1l)Y

'16. Are they being complied with? OC.l(2)

7. Number of modules used to perform translations? DC.I(3) _____

VII. HUMAN INTERFACE (USAlE1LITY)

1. Are all steps in operation described including alternative flows? OPFl10)

2. Number of operator actions., OP.1(4)

142

VI1. HUMAN INTERFACE (USABILITY) Continued

3. Estimated or Actual time to perform? OP.1(4) -

4. Budgeted time for complete Job? OP.1(4)
S. Are job set up and tear down procedures described? OP.l(5)

6. Is a hard copy of operator interactions to be meaintained? O.l(6) Ijl 4lI
7. Number of operator messages and responses? OP.l(2) ____

S. Number of different forats? OP.l1(2) ____

9. Are all error conditions and responses appropriately described? OP.l(2)
10. oes the capability exist for the operator to interrupt. obtain status.

save, modify. and continue processing? OP.I(3) Y 14
11. Are lesson plans/training materials for operators, end users, and

maintainers; provided? 11.1(1) Y II
12. Are realistic, simulated exercises provided? TN.1(2) y N
13. Are help and diagnostic information available? TN.l(3)

14. Numbetr of input formats CM.1(2)
I5. Number of Input values CM.l(l)

16. Number of default values CM.l(I)I
17. Numer of self-identifying input values C14.1(3)
19 Can Input be verified by user prior to execution? CM.l(4)
19. Is input terminated by explicitly defined by logical end of Input? CM.I(5

20. Can input be specified from different media? CM.1(6) Y_ N

21. Are there selective output controls? Ciq.2(l) V _ N

22. Do outputs have unique descriptive user oriented labels? CM.?(s) N-4

23. Do outputs have user oriented units? CM.2(3) _y N

24. Number of output formats? CH.2(4)
25. Are logical gr-oups of output sepa'.ited for user emaminatir7 CN.2(5)

-'126. A-e relationships between error messagps and outputs un~mbiquneis' CM.11(6

27. Are there provisions fo- directin; output to difterent mtedia' C04.2(l)

VII! TESTING; TESTABILITY) APPtf TOl TEST Pt AN. rROCEDUPFC. PRES011S

1. 4umber of piQhs? INJl(l) I I 4 Numbor of input LiarJatrvir .

2. Number nf palhS to be testrjd? b ese' iNI:
3. Number (,f inDut paranieiiii N'rntw. of -f't.'0-01'I (-

L.143

ME.TRIC 4UPK!nH.ET Zj. SYSTEM OATE.
.ES:GN/SYSTEM LEVEL NAME; INSPECTOR;

Viii. rESTING (TESTABILI1Y) -APPLY TO TEST PLAN, PROCEDURES. RESULTS (CONT|NUEO)

. 4umoer of interfaces to be testea' IN.2(l) 9. Number of modults? 1.013(l)

S. Number of Performance requirements to be eerciled? [N,3(1)

tested? 1N.2(2) 1I Are test inputs and outputS
__ _ __ _ __ _ __ provided in s.mry NV A

IX OATA BASE

I. Number of unitque data item in data base 51.1(6)

Z. Numer of preset data items SI.1(6)
3. Number of major segments (f1les) in data base SI.l(7)

X INSPFCTONRS COMPIENTS

Make any general or specific comments about the quality observed while, applying this

check list.

i

4

I "L44 ..

*. . . ." 1 j mm- "zz '
' ,I V~' '

ME'.RIC .IOPK timiET 2,s SYSTEM DATE.

3ES:,N/S.STEM LEVEL NAME. _INSPECTOR;

VIII. TESTING (TESTABILITY) - APPLY TO TEST PLAN. PROCEDURES. RESULTS (CONTINUED)

6. ,$umber of inLerfaces to be tested' IN.2(l) 9 Number of modules? IN.30)

7 Number of itemized performance requir 10. Number of modules to be
8. Number of performance requirements to be exercised IN.3(I)

tested? IN.2(2) - II Are test inputs and outputsp rovided in s,,..-,y [

Ix DATA BASE

1. Number of unique data Item in data base SI.1(6)

2. Number of preset data items SI.1(6)'

3. Number of major segments (ftles) in data base 51.1(7)

X IMSPCTORS COIWENTS

Make any general or specific comments about the quality observed while applying this

checklist.

1

r-~

, 1 45

METRIC WORKSHEET 2b SYSTEM4 NAME: _________DATE: ____

OESIGN/MOCULE LEVEL MO0ULF NAME: __________ INSPECTOR:

1. COMPLETENESS (CORRECTNESS, RELIABILITY)

1. Can you clearly distinguish inputs, outputs, and the function being performed? (P.1 (1) y N

2. How many data references are not Weined. computed, or obtained from an exaternal
source? CP.1(2)

3. Are all conditions and processing defined for each decision point? CP.l(S) T N
4. Now many problem reports have been recorded for this module? CP.l(7)

S. Profile of Problem Reports: a. Computational

6. Numer of problem reports still outstandingCP.17 fb. Logic

It. RECIION(RELABILTY)c. IIput/output

1. When an error condition Is detected. Is it Y N e. System/OS Support

2. Have numerical techniques being used In algori- f. Configuration

requireets? AY.1(4) Y N 9. Routine/Routine Inter-
face

3. Are values of Inputs range tested? ET.2(2) N h. Routine/System Inter-
4. Are conflicting requests and Illegal comint- VNfact

tions identified and checked? ET.2(3) Yi. Tape Processing
J. User Interface

S. Is there a check to see if all necessary data ItN . Data Base Interface
Is available before processing begins? ET.2() .U e R au s o Ch n s

6. Is all input checked, reporting all errors. m rstDt
before processing begins? ET.2(4) -M

rIn. Global Variable Do'-

7. Are loop and multiple transfer index parameters 'V N nition

range tested beore use? ET.3(2) P. Recurrent Errors

i. Documentation

8. Are subscripts range tested before usim' [T.3(3) - rRequirement ComplhA..p

9. Are outputs checked for reasonablpnes% before
processingq continues? ET.3(4) yNOeao

ki Q uestion%

II. STRUCTURE (REt [AeLIrrY. P4Ar[TArNA8tf Y. -FI TAA!I ITf

1. H~ow many Decision Points are there, % J 0W mar, rnndltlfnnal ')ran,-hp

m.~ ow manyfl subdecision Prnints Ar I o- I- ' hranr~h
there,'31 3 ? I

Copy av.. io to DTIC does n~ot
146 Peli fully legible iopioducmo

METRIC WORKSHEET 28 SYSTEM NAIE.:

DESIGN/NOOULE LEVEL MODULE NAML Pg. 2

111. STRUC:URE (RELIA11L .1Y. MAINIAINABItIlY. TFSTABILITY) (CONTINUED)

S. Is the module dependent on the 7. Are any limitations of the proces-

source of the input or the sing performed by the module
destination of the uutput? SI.1(3) Identified? EX.2(l)

6. Is the module dependent on know- 8. Number of entrances Into Uguf
ledge of prior processing? SI.113) N--

9. Number of exits from modul 11.l(5) !

IV. REFERENCES (MAINTAINABILITY, FLEXIBILITY, TESTABILITY, PORTABILITY, REUSABILITY,
INTEROPERABILITY)

I. Number of references to system 8. Is temporary storage shared with
library routines, utilities or other other modules? M0.2(7)
system provided facilities SS.l(l)
S.ystem fpto tpt f ac tins SS.1(9. oes the module mix input. out-

2. Number of input/output actions put and processing functions in
MI.I(2) sam module? GE.2(0)

3. Number of calling sequence parameters

MD.2(3) 10. Number of machine dependent
4. HOw many calling sequence parameters functions performed? GE.2(2)

ae control variables N.2(3)
cno-- I]. is processing data volume limjtd Y

S. Is Input passed as calling sequence GE.(3)
parameters O.2(4) 1 N 2. Is processing data value lNi Y N_

6. Is output passed back to calling 13. Is a common. standard subset of
module? 140.2(5) Y N programing language to be used? VYss.1(2) -

7. Is control returned to calling [7 14. Is the programing language
modulevilble in other machines? Y

V. EXPANOABILITY (FLEXIBILITY)

1. Is logical processing independent of storage specification? EX.I(I) Y N

2. Are accuracy. convergence, or timing attributes parametric? EX.2(l) Y N

3. Is module table driven? EX.2(2) Y N

VI. OPTIMIZATION (EFFICIENCY)

1. Are specific perf)rmance requirements (storage and routine) allocated to this N

odule? EE.1

1.47

METRIC WORKSHEET 2b SYSTEM NAME:

DES|GN/MODULE LEVEL MODULE NAME Pq. 3

VI. OPTIMIZATION (EFFICIENCY) (CONTINUED)
2. Which category does processing fall in: CE.2

Real-time

On-2in.

Time-constrained

SNon-time critical

3. Are non-loop dependent functions kept out of loops? EE.2(i)

4. Is bit/byte packing/unpacking performed In loops? EE.2(S)

S. Is data indexed or reference efficiently? EE.3(S)

VII. FUNCTIONAL CATEGORIZATION

Categorize function performd by this module accordingJ to following-

[I] CONTROL - an executive module whose prime function is to invoke other modules.

] INPUT/OUTPUT - a module whose prime function is to comunicate data between
the computer and the user.

I I PRE/POSTPROCESSOR - a module whose prim function is to prepare data for or
after the invocation of a computatien or data management
module.

[I]ALGORITHM - a module whose prim function Is computation.

[I DATA MANAGEMENT - a moudle whose prime function is to control the flow of
data within the computer.

SYSTEM - a module whose function is the scheduling of system resources for

other modules.

V*t[VIl. COiSISTECY

I Does the desiqn representation comply with established standards CS.l(l) N

2. Do input/output references comply with established standards CS.1(3) Y I
3. Do calling sequences comply with established standards CS.1(2) V N

4. Is error handling done accordinq to established standards CS.l(4) y N

5 Are variable named accordinq to established standards CS.2(,)

6 Are global voiriables used a% defined globally CS.2(3) Y N

1.48

METRIC WORKSHEET 2b SYSTLM NAME: ____

OESIGN14/MDLLE LEVEL OUL L NAM: E

IA. Ls45ptcJONts citNIS

Make any specific or general (.ugwents about the quality observed while applying this

checklist?

1-49

SMETRIC WMSMET 3 SYSTEM NAME : DATE :

!.

2. N er of lines eliuding co ts 12. Number of conditional branches
SI.4(2) (computed go to) SI.4(0)

3. Number of machine level language 13. Number of unconditional branches
statements S0.3(l) (COTO, ESCAPE) SI.4(9)

4. Number of declarative statements 14. Number of loops (WHILE, DO)
s1.4 S .4(3)

S. Number of data minipulation state- 15. Number of loops with Jumos out of
meets SI.4 loop SI.41(3)

4. Eulier of statement labels S14(6) 16. Nusber of loop indicies that are
(0o not count format statements) modified SI.4(4)

7. Number of entrances fnto module 17. Number of constructs that perform
SI.(S) module modific tion (SWITCH,

S. Number of exits from module ALTER) SI.4(S)
SI(S) 18. Number of negative or comnilicated

9. RIV40 nesting level S1.4(7) compound boolean express tons

10. vmer of decision points 19. is a structured lanpguage i (?)
(IF, WNILE, REPEAT, DO, CASE) SI.3 20. Is flow top to bottom (are there Y N

any backward branchin GOTOs)SI. 4 (l - N

II. CONCISENESS (MIWNTAINMILITY) - SEE SUPPLEMENT

1. Nuer of operators 0.) 3. Nuer of Operands CO.,

2. Number of unique operators 00.1 4. Number of unique operands CO.)

111. SELF-OESCRIPTIVENESS (MAINTAINMILITY, FLEXIBILITY. TESTABILITY. PORTAILITY. REUSABILITY)

1. Nuber of lines of commnts S.1 7. Are non-standard HOL statemnts
2. Nuem r of non-blank lines of coments commented? SD.Z(S)

. ~SD.1 -- --

3. Are there prologue comments provided 8. How many declared variables are
containing informtion about the not described by ,ommntS?
function, author, version number. S0.2(6)
date, inputs, outputs, assumptions Y N
and limitations? -J-- .' Are variable nanps (rmemonlcs)

4. Is there a commnet which indicates deScr1Pt1v0 Of the nhysical or
what itemized requirement is functional propert they
satisfied by this module? S0.2(1) Y N revrpfnt .

T ,) On th: c Oyrnts do nore than
S. Now many decision points and trans- pa h prain o27fers of control are not commented? ,n'SO.2(3) 1; Is the cod o loqi(alr y blo ked and

6. Is all machine lanquaqe code conndmntd SD. S)

Number~ if ii,' w'fti mnr, than LL
I statfimet 40 '(4) -L

15 rmr. ,. 1

ITRIC WORKSHiELT 3 'SYSTEM NAME-I

SOURCE CODE MOULE ILVEL 1400011 NAME Pg.______ 2

IV. IPUT/OUTPUT (RELIABILITY. FLEXIBILITY. PORTABILITY)

1. Nustiey of input .tdteiflents 141.1(2) 4 Are inputs range-tested (for

inusvia calling Yeqenes
statements) ET.2(

3. I amuntof npu tnt cn b S.Are Possible conflicts or Illegal
hadld armeriGE2(J) jA combinations in inputs checked?

Li N ET.20)
6. Is there a check to deterine If

4)l data is available prior to
processing? ET.?(S) Y N

V. REFERENCES (RELIABILITY, MAINTAINABILITY. TESTABILITY. FLEXIBILITY. PORTABILITY. REUSABILITY)

1. Number of calls to other modules 6. No men parameters passed to or
2. ~erof efeencs t 31.2(l.) from other modules are not definedliNuberyo refetines t yse in this modulo? MD.2(3)librry outies.utilities. or

other system provided functions 7. Is Input data passed as parameter?Y N
SS.lIl 00.2(4)

3. umber of calling sequence parameters
31.2(3)

4. Now many elements in calling
sequences are not parameters? 6. Is output data passed back to T

M0.2(3) calling modulo? 00.2(S)
5. How many of the calling parameters

(input) are control variables? 9. Is control returned to calling Y
30.2(3) L....J module? MD.2(6)

V1. DATA (CORRECTNESS, RELIABILITY, MAINTAINABILITY, TESTABILITY)

1. Number of local variables SI.4(lo) 4. Now many global variables are not
used consistently with respect to

2. Number of global variables S1.4(10) units or type? CO N()

3. Nuer of global variables renamed S. How many variables are used for
SE.1(3) more than one purpose? CS.2(3)

ViI. ERROR HANDLING - (RELIABILITY) Vill. (EFFICIENCY)

1. Now many loop and multiple transfer 1. Number of mix mode expressions?
index parameters are not range EE.3(3)
tested before use? ET.3(2) 2. How many variables are Initialixed

-when declared? EE.3(2)
2. Are subscript values range tested 3. mow many loops have non-loop

before use? ET.3(3) dependent statements in them?EE2D
Y N 4. How many loops have bit/byte

3. When an error condition occurs, IS It packing/unpacking? EE.2()
passed to the calling mdule? ET.1(3) YM E. 6

4. Are the results of a computation 5. mow many compound expressions
checked before outputting or before feined more than once? EE123)-
processing continues? ET 3(4) q

151

METRIC WORKSHEET 3 SYSTE14 NAME: _____

SOURCE COOE/NOOSLE LEVEL M4DULE NME: __________Pg. 3

IX. PORTABILITY X. FLEXIBILITY

I. Is cods independent of word and I. Is module table driven (5.2(2) ~
ha ac er iz ? M~ l 3)YE N 2. Are there any limits to data

2. Nuer of lines of machine language vaue Nhtcnbpoesd

statements. MiI.24
3. Is date representation machine I. Are there any l imits to mounts

indepedent? 141.1(4) of data that can be processed?
V N GE.2() V N

4. Is data acCOSS/Storage systom Soft- *. Are accuracy. convergence and
ware independent? SSA1 timing attributes parametric?

7 N (.2(1) Y

K1. u ISMIC MEASUREMENTS (EFFICIENCY, RELIASILITY)

I. -Dring execution are outputs within accuracy tolerances? AY. I(S) N

*2. During module/development testing, what was run time? EX.2(3)

3. Complete memory rap for execution. of this module SE.l(4)
____________ Size (words of mmory)

APPL ICAT ION

SYSTEM4

DATA

OTHER

4. During execution how many data I tems were referenced but not modified EE.3(6)

S. During execution how many data I teas were modi f Ied EE. 3(7)

XII. INSPECTORS COMMENTS

M@:@ any general or specific comments that relate to the quality observed by vou while
applyi ng this checklistt

.15 2

:1

APPENDIX B

WORKSHEET REQUIREMENTS

(Ref 51)

Nibs

WORKSHEET REQUIREMENTS

The following is a description of the data that the
Automated Measurement Tool (AMT) requires(hA 17,23). The
following conventions apply to certain documents and source
code:

As an overview:

o Worksheet 1 is manually applied to the requirements
analysis at the system level.

o Worksheet 2a is manually applied to the design docu-
ment at the system level.

o Worksheet 2b is manually applied as required to the
design documents at the module level.

o Worksheet 3 is applied to the code. Many of the
values will be collected automatically by AMT and
entered into the data base for further usage. The
remaining items will have to be entered manually.

All data may be included in the AMT database provided the
following conventions are to be used in filling out the
worksheets:

1. If a numerical value is called for, enter a real
number of -1 for not applicable responses.

2. If a "yes" or "no" response is called for, circle
"Y" or "N". For not applicable responses write NA
over the Y or N.

3. If the item is numeric and is not applied to the
development in question, e.g., the development
standards do not require problem reports to he
filed against the requirements, or otherwise "not
applicable" enter a negative (-1) or "NA".

4. The name of the system and/or module must he
common across all worksheets.

5. A separate worksheet nmber 2b and I must ne filled

out for each module.

6. A maximum of 180 characters may be entered into the
comments section of each worksheet.

The data elements are defined below in outline form
corresponding to the worksheets. Each worksheet is
self-contained and uses no raw data beyond itself.

WORKSHEET 1

This worksheet will use the requirements document(s) and an
adalyst will manually fill out the worksheets.

I. COMPLETENESS
1. Self explanatory
2. Self explanatory
3. Self explanatory
4. Refers to 1-3
5. Refers to I-1
6. Refers to I-1
7. Refers to 1-3
8. Refers to 1-4 and 1-7
9. Self explanatory

10. Self explanatory, often not applicable. If
NA, enter -1.

11. Refers to 1-10. If 1-10 is NA this must be -1.

II. PRECISION
1-6. All are yes or no responses

III. SECURIY
1-5. All are yes or no responses

IV. HUMAN INTERFACE
1-6. All are yes or no responses

V. PERFORMANCE
1. May be stated in either numbers or prose

VI. SYSTEM INTERFACES
1. yes or no

VII. INSPECTOR'S COMMENTS
Free format, limited to IPO characters

WORKSHEET 2a

This worksheet is used to evaluate the design documents at
the system level and an inspector will manually fill out
one for the system design.

I. COMPIrENESS
1. Mandatory yes oi no
2. Self explanatory

3-5. Refer to 1-2
6. May be NA. If NA, enter -1.
7-27. If 1-6 is NA, all must be -1.

II. PRECISION
1-2. Mandatory yes or no
3. Requires a positive integer other than zero
4-5. Zero or positive integer
6-7. Mandatory yes or no

III. STRUCTURE
1-2. Mandatory yes or no
3. Requires a positive integer other than zero
4. Zero or positive integer
5. Mandatory yes or no

IV. OPTIMIZATION
1-5. Mandatory yes or no
6. Yes, No, or NA
7. Mandatory yes or no
8. Positive integer or zero
9-11. If IV-8 is zero, must be zero or -1.

V. SECURITY
1. Mandatory yes or no
2. Yes, No, or NA
3-4. Mandatory yes or no

VI. SYSTEM INTERFACES
1. Positive integer or zero
2. Mandatory yes or no
3. Yes or no. If VI-2 is No, must be No.
4. Positive integer excluding zero
5. Mandatory yes or no

-- 6. If VI-5 is no, must be no
7. Positive Integer or zero

VII. HUMAN INTERFACE
1. Mandatory yes or no
2. Positive integer excluding zero

j 3-4. Either zeros or a unit figure. Be sure
measurement units are same for 3 and 4.

5-6. Mandatory yes or no
7-8. Positive integer or zero
9-13. Mandatory yes or no
14-17. Positive integer or zero
18-23. Mandatory yes or no
24. Positive integer or zero
25-27. Mandatory yes or no

VIII. TESTING
1-10. Positive integers or zero
Sii. Mandatory yes or no

IX. DATA BASE
1-3. Positive integers or NA

X. INSPECTOR'S COMMENTS
Free format, limited to 180 characters.

WORKSHEET 2b

This worksheet is used to evaluate the design documents at
the module leve. An inspector will fill out one for each
module design document(s).

I. COMPLETENESS
1. Mandatory yes or no
2. Positive integer or zero
3. Mandatory yes or no
4-5. Positive integers, zero, or NA. If NA,

enter -1.
6-24. Positive integers, zero, or NA. If 1-4 is

NA, (-1) 6-24 is NA. All NA's are entered
as -1.

II. PRECISION
1-9. Mandatory yes or no

III. STRUCTURE
1-4. Positive integers or zero
5-7. Mandatory ye_ or no
8-9. Positive integer excluding zero

IV. REFERENCES
1-4. Positive integers or zero
5-14. Mandatory yes or no

V. EXPANDABILITY
1-3. Mandatory yes or no

VI. OPTIMIZATION
1. Mandatory yes or no
2. Circle 1, 2, 3, or 4
3-5. Mandatory yes or no

VII. FUNCTIONAL CATEGORIZATION
Circle 1, 2, 3, 4, 5, or 6

VIII. CONSISTENCY
1-6. Mandatory ye- or no

TX. INSPECTOR' S COMMENT:-
Free format, limitel Vo 180 charact:ers.

WORKSHEET 3

This worksheet is used to evaluate the source code of each
module. An inspector must enter the following items
manually. The remainder are automatically gathered from
the source code.

I. STRUCTURE
3, 14, 15, 16, and 18 Positive integer or zero
19-20. Mandatory yes or no

II. CONCISENESS
1-4. Positive integer

III. SELF-DESCRIPTIVENESS
2. Positive integer or zero
3-4. Mandatory yes or no
5. Positive integer or zero
6-7. Yes, no, or NA
8. Positive integer or zero
9-11. Mandatory yes or no
12. Positive integer or zero

IV. INPUT/OUTPUT
3-6. Mandatory yes or no

V. REFERENCES
2-6. Positive integer or zero
7-9. Mandatory yes or no

VI. DATA
1-5. Positive integer or zero

VII. ERROR HANDLING
1. Positive integer or zero
2-4. Mandatory yes or no

VIII. EFFICIENCY
3-5. Positive integer or zero

IX. PORTABILITY
1. Mandatory yes or ro

* 2. Positive integer or %-ero
3-4. Mandatory yes or no

X. FLEXIBILITY
1-4. Mandatory yes or no

XI. DYNAMIC MEASUREMENTS
1. Yes, no, or NA
2-3. Both items must have similar units of

measurements or zero
4-7. Positive integers or zero. May be expressed

in units of hundreds or thousands
8-9. Positive integer or zero.

XII. INSPECTOR'S COMMENTS
Free format, limited to 180 characters.

.1

U',

APPENDIX C

EXPLANATION OF M4ETRICS

(Refs 17, 23)

EXPLANATIOH OF METFIC3

Eicn metric and each metric element ire Jescribed in :ne following paragraphs.

r:idication is orovioed if the metric is applied at :he system level or the

module level and during wnich phases.

Traceability
-R.l Cross reference relating modules to requirements (design and imple-
mentation phdses at system level).

During design, the identification of which itemized requirements are satis-

fled in the design of a module are documented. A traceability matrix is an

example of how this can be done. During implementation, which itemized require-

ments are being satisfied by the module implementation are to be identified.

Some form of automated notation, prologue comments or imbedded comments, is

used to provide this cross'reference. The metric is the identification of

a tracing from requirements to design to code.

Completeness

C?.1 Completeness Checklist (All three phases at system level).

This metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Unambiguous references (input, function, output).

Unique references to data or functions avoid ambiguities such as

a function being called one name by one module and by another

name by another module. Unique references avoid this type of

ambiguity in all three phases.

(2) All data references defined, computed. or ootained from an

external source.

Eac!i data element is to nave a specific origin. At the

recuirements level only major global data elements and a few

s.eciflc local data elemens iay be available tc be :heckeo
Tle set of data elements 3vailable for :omolpteness :neckIIg 3.

"'ie design level increases ;jostantia'', ind is to be :rMp ete
- imolementation

(3) All defined functions used.

A function which is defined but not used during a phase is

either nonfunctional or a reference to it has been omitted.

(4) All referenced functions defined.

A system is not complete at any phase if dummy functions are

present or if functions have been referenced but not defined.

(5) All conditions and processing defined for each decision point.

Each decision point is to have all of its conditions and alter-

native processing paths defined at each phase of the software

development. The level of detail to which the conditions and ilter-

native processing are described may vary but the important element

is that all alternatives are described.

(6) All defined and referenced calling seauence parameters agree.

For each interaction between modules, the full complement of

defined parameters for the interface is to be ised. A par-

ticular call to a module should not pass, for example, only five

of the six defined parameters for that module.

17) All oroblem reports resolved.

At each phase in the development, problem reports are generated.

Each is to e closed or a resolution indicated to ensure i

comolete product.

_aid

mo

Cansistency

CS.1 Procedure Consistency Measure (design and implementation at system

level).

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Standard Oesign Representation.

Flow charts, HIPO charts, Program Oesign Language - whichever form

of desiqn representation is used, standards for representing the

elements of control flow are to be established and followed. This

element, applies to design only. The measure is based on the number of

moAl4es whose design representation does not comply with the standards.

(2) Calling sequence conventions.

Interactions between modules are to be standardized. The stan-

dards are to be established during design and followed during
implementation. The measure is based on the number of modules

which do not comply with the conventions.

(3) Input/Output Conventions.

Conventions for which modules will oerform 1/0, how it will be

accomplished, and the I/O formats are to be established and

followed. The measure is based on which modules do not comply with

the conventions.

(4 Error Handling Conventions.

A consistent method for er-or handling is reauired. Conven-

tions established in design ars 'ollowed into implementation.

The measure is based on the number of modules which do not
ccmoly with the conventions.

4..

-'S.2 ata Consistency Measure (Design and implementation at system 'eve1)

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Standard data usage representation.
in concert with CS.] (1), a standard design representation for

oata usage i; to be established and followed. This is a desiqn retric

cnly, identifying the number of modules which violate the st3ndards.

(2) Naming Conventions.
Naming conventions for variables and modules are to be established

and followed.

(3) Consistent Global Definitions.

Global data elements are to be defined in the same manner by all

modules. The measure is based on the number of modules in which

the global data elements are defined in an inconsistent manner

for both design and implementation.

A

jcy

...- ,.

Aczuracy

AC.1 Accuracy Checklist (requirements, design, implementation phases at

system level). Each element is a binary measure indicating existence, or

absence of the elements. The metric is the sum of the scores of the

following applicable elements divided by the number of applicable elements.

(1) Error analysis performed and budgeted to module (reouirements

phase only).

An error analysis must be part of the requirements analysis performed

to develop the requirements specification. This analysis allocates
overall accuracy requirements to the individual functions to be

performed by the system. This budgeting of accuracy requirements

provides definitive objectives to the module designers and

implementers.

(2) A definitive statement of requirement for accuracy of inputs,

outputs, processing, and constants (requirements phase only).

See explanation above (1).

(3) Sufficiency of Math Library (design phase only).

The accuracy of the math library routines ,tilized within the

system is to be checked for consistency witn the overall

accuracy objectives.

(4) Sufficiency of numerical methods (design and imolementation

1hase).

The numerical iechods utilized *4ithin the system are to e conss-

tent with the accuracy objectiv,!s. They can be checked at des (n

and implementation.

(5" Execution Outouts vi:nvn to ir ces mo1men3tion chase nn
-ecui-ino execut on .

i :inal ieasure lurini ieve&nrment "est'na •;,,:ut',:r-

es rd :ineck 'in r 3ccur3c, , uut.

Eror Tolerance

. Error Tolerance Control Checklist (design and implementation phases
at system level).

The metric is the sUm of the scores given to the following elements divided
by the number of applicable elements.

(1) Concurrent processing centrally controlled.

Functions which may be used concurrently are to be controlled
centrally to provide concurrency checking, read/write locks, etc.
Examples are a data base manager, I/0 handling, error handl ng,
etc. The central control must be considered at design and then
implemented.

(2) Errors fixabTe and processing continued.
When an error is detected, the capability to correct it on-line

and then continue processing, should be available. An example is
an operator message that the wrong tape is mounted and processing
will (:Kitinue when correct tape is mounted. This can be measured

at design and implementation.

(3) when an error condition is detected, the condition is to be oassed uo to
calling routine.
The decision of what to do about an error is zo be made at a
level where an affected module is controlled. This concept is
built into the design and then implemented.

S':7.2 Recovery from Improper Input Data _hecklist (all three ohasps 3t
system level). The metric is the sum of the scores of the followinq aopli-
cable elements divided by the number of the 3policable elements.

166

(1) A definitive statement of reouirement for error tolerance of

input data.

The requirements specification must identify the error tolerance

capabilities desired (requirements phase only).

,2) Range of values (reasonableness) for items specified and checked

(design and implementation phases only).

The attributes of eacn input item ire to be checked for reason-

ableness. Examples are checking items if they must be numeric,

alphabetic, positive or negative, of a certain length, nonzero,

etc. T.ese checks are to be specified at design and exist in

code at implementation.

(3) ConflictIng requests and illegal combinations identified and cnecked

(design and implementation phases only).

Checks to see If redundant input data agrees, if combinations of param-

eters are reasonable, and if requests are conflicting should be docu-

mented In the design and exist in the code at implementation.

(4) All input is checked before processing begins (design and imple-

mentation phases only).

Input checking is not to stop at the first error encountered but to c: n-

tinue through all the input and then report all errors. Orocessing is

not to start until the errors are reported and either corrections are

made or a continue processing command i; given.

, (5) Determination that all data is available prior to orocessing.

* To avoid going through several orocessing steps Defore incomole'e
input data is discovered, checks for sufficiency of inout Jara

ire to be made orior to the start of orocessina.

--.3 Recovery from Computational Failures Theck1isz 3'! tnre onases j!

system 'evel:. The etr~c is the sum)f the ;ccres o- 1e collowinc aool-

:30 1 e eleMents divided lv 'he number)-: 3c01icabie elemepts.

1(7

1) A definitive statement of requirement for recovery from compu-

tational failures (requirements phase only).

The requirement for this type error tolerance capability are to

be stated during requirements phase.

"2) Loop and multiple transfer index parameters range tested before

use. (design and implementation phase only).

Range tests for loop indices and multiple transfers are to ne

specified at design and to exist in code at implementation.

,3) Subscript checking (design and implementation phases only).

Checks for legal subscript values are to be specified at desigr

and coded during implementation.

(4) Critical output parameters reasonableness checked during

processing (design and implementation phases only).

Certain range-of-value checks are to be made during processing to

ensure the reasonableness of final outputs. This is usually dcne

only for critical parameters. These are to be identi fied duriig

design and coded during implementation.

ET.4 Recovery from Hardware Faults ChecKlist (All three phases at system

level). The metric is the sum of scores from the applicable elements Jiviced

oy the number of applicable elements.

1) A definitive statement of requirements for recover','.om iardware

3ults (requirements only).

-he handling of hardware faults such is 3ritnmet-c fauTts, sower

failure, :lock interrupts, et:., are to be specified Juring ro-u ie-

-ments phase

J,

'2) Recovery from 'Aardware Faults (iesign and imolementation pnases

only).

The design specification and code to provide the recovery from

the hardware faults identified in the requirements must exist

in the design and implementation pnases respectively.

ET.5 .Recovery from Device Errors Checklist (all three phases at system

level . The metric is the score given to the applicable elements below

at each Phase.

1) A definitive statement of requirements for recovery from devic .

errors (requirements only).

The handling of device errors such as unexpected end-of-files

or end-of-tape conditions or read/write failures are speci,'ied

during the requirements phase.

2) Recovery from Device Errors (design and implementation phases

only).

The design specification and code to provide the required

handling of device errors must exist in the design and implementation

phases respectively.

Simol i citj

S1.1 Oesign Structure Measure (design and implementation ohases at system

level). The metric is the sum of the scores of the applicable elements

divided by the numoer of applicable eiements.

'. Design organized in .op iown fashion.
Aierarcly chart of system 7odules is usually 3vailaole or -asy

to construct from design documentation. !t should -e' ct t~fe

accepted notion of too down desian. -he system is)rani'azej
in a 1iericr-hal tree str jc-ur,_, -aci 'evel :f the t ,- or -e.w'sents

w-er level;)f etv Iescrin-ons i - ri-

(-' Module independence.

The orocessing done within a module is not to oe depenoent on the

source of input or the destination of the output. This rule can

be applied to the module description during design and the coded

module during implementation. The measure for this element is

based on the number of modules which do not comply with this rule.

(3) Module processing not dependent on prior processing.

The orocessing done within a module is not to be dependent upon

knowledge or results of prior processing, e.g., the first time

through the module, the nth time through, etc. This rule is

applied as above at design and implementation.

(1) Each module description includes input, output, processing,

limitations.

Documentation which describes the input, output, processing, and

limitations for each module is to be developed during design and

available during implementation. The measure for this element is

based on the number of modules which do not have this information

documented.

(5) Each module has single entrance, single exit.

Determination of the number of modules that violate this rji,- at

design and implementation can be made and is the basis for !he metric.

iSize of data base.
The size of the data base in terms of the number of .4nioue .ata

items contained in the data base relates to the iesign struicture

of the software system. A Jata item is a .inique data elemen:

for example an individual data entry or iata leiid.

. L ... ,. ... L. . 'O-

L

(7) Compartamentalization of Data Base

The structure of the data base also is represented oy its

,odularization or how it is decomposed. The size determined

in (6) above divided by the number of data sets provided this

measure. A data set corresponds to the first level of decom-
position of a data base, e.g., a set in a CODASYL data base,

a record in a file system, a COMMON in FCRTRAN, or a Data

Block in a COMPOOL system

SA. 3 Data and Control Flow Complexity measure (Design and implementation

phases).

This metric can be measured from the design representation (e.g., flowcharts)

and the code automatically. Path flow analysis and variable set/use informa-

tion along each path is utilized. A variable is considered to be 'live' at a

node if it can be used again along that path in the program. The com-

plexity measure is based on summing the 'liveness' of all variables along

all paths in the program. It is normalized by dividing it by the maximum

complexity of the program (all variables live along all paths).

SI.4 Measure of Simplicity of Coding Techniques (Implementation phase

applied at module level first). The metric at the system level is an

ave-aged quantity of all the module measures for the system. The module

measure is the sun of the 3cores of the following aoplicable elements

divided by the number of applicable elements.

(1) Module flow top to bottom.

This is a binary measure of the logic flow of a module. if it

flows too to bottom, it is given a value of 1, if riot a 0.

(2) Negative Boolean or complicated Compound Boolean expressions

used.

Comcound expressions involving :wo or more Boolean operators and

negation can often be avoided. These types of expressions Add

to the complexity of the -odule. The measure is based on the

numoer of these complicated expressions oer executable staternert

in !ie nodule.

171

(3) Jumps in and out of loops.
Loops within a module should have one entrance and one exit.

This measure is based on the numoer of loops which comply with this

rule divided by the total number of loops.

(4) Loop index modified.

-Modification of a loop index not only complicates the logic of a

odule but causes severe problems while debugging. This measure

is based on the number of loop indices which are modified divided

by the total number of loops.

(5) Module is not self-modifying.
If a module has the capability to modify its processing logic it becomes

very difficult to recognize what state it is in when an error occurs. In

addition, static analysis of the logic is more difficult. This measure

emphasizes the added complexity of self-modifying nodules.

(6) Number of statement labels.

This measure is based on the premise that as more statement labels

are added to a module the more complex it becomes to understand.

(7) Nesting level.

The greater the nesting level of decisions or loops within a mod-

ule, the greater the complexity. The measure is tne inverse of

the maximum nesting level.

: '/ Number of branches.
The more paths or branches that are present in a module, the

greater the complexity. This measure is based on -he number
3f decision statements oer executable statements.

172

(9) Number of GOTO's.

Much has been written in the literature about the iirtues of

avoiding GOTO's. This measure is based on the number of GOTO

statements per executable statement.

(10) Variable mix in a module.

From a somplicity viewpoint, local variables are far better than

global variables. This measure is the ratio of internal (local)

variables to total (internal (local) plus external (global))

varialbes within a module.

(11) Variable density.

The more used of variables in a module the greater the complexity

of that module. This measure is based on the number of variable

uses in a module divided by the maximum possible uses.

Modularity

MO.2 Modular Implementation Measure (design and implementation phases at

system level). The metric is the sum of the scores of the following ap-

plicable elements divided by the number of applicable elements.

(1) Hierarchical Structure.

The measure refers to the modular implementation of the top down

design structure mentioned in SI.1 (1). The hierarchical struc-

ture obtained should exemplify the following rules: Irteractions

between modules are restricted to flow of control between a ore-

decessor module and its immediate successor mocules. This mea-

sure is based on the number .of violations to this rule.

S2) Module Size Profile.

The standard module size of orocedural statements can vary. 100

statements has been mentioned in the literature frequently.

This measure is based on t.le number 3.f oroceduril statements :n

, nodule.

177

k3) 'ontrolling parameters defined by calling mojuie.

The next four elements fur'ter elaborate on :ne contrl ind

interaction between modules referred to by (1) above. lhe

calling module defines the controlling parameters, any input

data required, and the output data required. Control must

also be returned to the calling module. This meAsure is based

on the number of calling parameters which are control para-

meters. The next three are based on whether a rule is vio-

lated. They can be measured at design and implementation.

(4) Input data controlled by calling module.

See (3) above.

(5) Output data provided to calling module.

See (3) above.

(6) Control returned to calling module.

See (3) above.

(7) Modules do not share temporary storage.

This is a binary measure, 1 if modules do not share temoorary

storage and 0 if they do. It emphasizes the loss of module

'4 independence if temporary storage is shared between modules.

Generality

GE.i Extent to which modules are referenced by other nodules ,design and

implementation at system level). This metric provides a measure 3f the

3enerality of the modules as they are used in the current system. nod-

ule is ,:onsidered to be more general in nature if it is used (referenced)

by more than one module. The number of these zommon modules vivided by

the tot.al number of modules provides the measure.

174

of all possible inputs to which a function can oe applied tne

less general it is. Thus, this measure is based on the number

of modules which are data valie limited. This can be deter-

mined at design and implementation.

Expandability

EX.l Data Storage Expansion Measure (design and implementation phase at

system level). The metric Is the sum of the scores of the following appli-
cable elements divided by the number of applicable elements.

(1) Logical processing independent of storage specification/require-

ments. The logical processing of a module is to be independent

of storage size, buffer space, or array sizes. The design pro-

vides for variable dimensions and dynamic array sizes to be defined

parametrically. The metric is based on the number of modules con-

taining hard-coded dimensions which do not exemplify this concept.

(2) Percent of memory capacity uncommitted (implementation only).

The amount of memory available for expansion is an important mea-

sure. This measure identifies the percent of available memory

wnich has not been utilized in implementing the current system.

EX.2 Extensibility Measure (design and implementation phases at the system

level). The metric is the sum of the scores of the following apolicable

elements divided by the number of applicable elements.

175

I, GEo2 Implementation for Generality Measure (design and implementation

phases). This metric is the sum of the scores of the following applicable

elements divided by the number of applicable elements.I
(1) Input, processing, output functions are not mixed in a single

function.

A module which performs 1/0 as well as processing is not as

general as a module which simply accomplishes the processing.

This measure is based on the number of modules that violate

this concept at design and implementation.

(2) Application and machine dependent functions are not mixed in

a single module (implemntatlon only).

Any references to machine dependent functions within a module

lessens its generality. An example would be referencing the

system clock for timing purposes. This measure is based on the

number of machine dependent functions in a module.

(3) Processing not data volume limited.

A module which has been designed and coded to accept no more

than 100 data item inputs for processing is certainly not as

general in nature as a module whicn will accept any volume of

input. This measure is based on the number of modules which

are designed or implemented to be data volume limited.

(4) Processing not data value limited.

A previously identified element, ET.2 (2) of -'tror Tolerance

dealt with cf.ecking input for reasonableness. This capao-i 1 ty

i is required to prevent providing data to a function for wnl'n

it is not defined or its degree of precision is not acceptable,

etc. This is necessary capability from in error ,.olerance

iiewpoint. Fom i general'ty /owpoint. tne smaller the ;.,osel:

176

(1) Accuracy, convergence, timing attributes wnich control processing

are oarametric.

A module whicn can provide varying degrees of tr'nvergence or timing

to achieve greater precision provides this attribute of extensibil-

ity. Hard-coded control parameters, counters, clock values, etc.

violate this measure. This measure is based on the number of mod-

ules which do not exemplify this characteristic. A determination

can be made during design and implementation.

(2) Modules table driven.

The use of tables within a module facilitates different representa-

tions and processing characteristics. This measure which can be

applied durins design and implementation is based on the numoer of

modules which are not table driven.

(3) Percent of speed capacity uncommitted (implementation only).

A certain function may be required in the performance requirements

specification to be accomplished in a specified time for overall

timing objectives. The amount of time not used by the current

implementation of the function is processing time available "or

potential expansion of computational capabilities. This measure

identifies the percent of total processing time that is

uncommitted.

I ns trumnentation

[N.1 Module testing measure (design and implementation phases, first 3t mod-

ule level then system level). The system level metric is an average of all

module measures. The module measure is the average score of the following

two elements:

.) Path coverage.

Plans for testing the various Oaths within a module shoull be made

during design and the test :3ses actually developed durin imole-

mentation. This measure! icentifies the number of oaths p:anned to

be -ested Jiviaed ,v the tora' number of oaths.

2) trnout parameters boundar' estd.

-he othe, isoect of rodule -.es-inq nvolves testing t.e inN'

77

ranges to the module. This is Jone by exercising the -noduie 3t the

various boundary values of the input parameters. Plans to .o this

must be specified during design and coded during implementation.

The measure is the number of parameters to be boundary tested

divided by the total number of parameters.

IN.2 Integration Testing Measure (design and implementation phases at system

level). The metric is the averaged score of the following two elements.

(1) Module interfaces tested.

One aspect of integration testing is the testing of all module to

module interfaces. Plans to accomplish this testIng are prepared

during design and the tests are developed during implementation.

The measure is based on the number of i'iterfaces to be tested

divided by the total number of interfaces.

(2) Performance requirements (timing and storage) coverage.

The second aspect of integration testing involves checking for com-

pliance at the module and subsystem level with the performance

requirements. This testing is planned during design and the tests

are developed during implementation. The measure is the numoer

of performance requirements to be tested divided by the total

number of performance requirements.

,!

t~

IN.3 System Testing Measure (design and implementatijn oh ses it the system

level'. The metric is the averaged score of the two eiemet3 below.

(1) Module Coverage.

One aspect of system testing which can be measured as early as the

design phase is the equivalent to path coverage at the module level.

For all system test scenarios planned, the percent of all of the

modules to be exercised is important.

(2) Identification of test inputs and outputs in summary form.

The results of tests and the manner in which these results are

displayed are very important to the effectiveness of testing. This

is especially true during system testing because of the potentially

large volume of input and output data. This measure simply identi-

fies if the capability exists to display test inouts and outputs

in a summary fashion. The measure can be applied to the plans

and specifications in the design chase and the development :f

this capability during implementation.

Self Oescriotiveness

SO.. Quantity of Comments (implementation phase at module level first and

then system level). The metric is the number of comment lines divided by the

total number of lines in each module. Blank lines are not counted. The

average ialue is computed for the system level metri,:.

II',

SO.2 Effectiveness of Comments Measure (implementation ohase at system level).

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Modules have standard formatted prologue comments.

This information is extremely valuable to new

personnel who have to work witn the software after development,

performing maintenance, testing, changes, etc. The measure at

the system level is based on the number of modules which do not

comly with a standard format or do not provide complete information.

(2) Comments set off from code in uniform manner.

Blank lines, bordering asterisks, specific card columns are some of

the techniques utilized to aid in the identification of comments.

The measure is based on the number of modules which do not follow

the conventions established for setting off the comments.

(3) All transfers of control and destinations commented.

This form of comment aids in the understanding and ability to follow

the logic of the module. The measure is based on the number of

modules which do not comply.

(4) All machine dependent code commented.

, Comments associated with machine dependent code are import3nt not

only to explain what is being done but also serves to identily

Kj, that portion of the module as machine dependent. The metr'c is

- based on the number of modules mnich do not lave the machine

dependent code commented.

5', All non-standard HOL statements commented.

A similar- explanation to -) lbove is Dool'c.iblp nere.

j

(6) Attributes of all declared variables commented.

The usage, properties, units, etc., of variables are to be 4xplained
in commnts. The measure is based on tIe number of modules which~ do

not follow 'his practice.

(7) Comnents do not just repeat operation described in language.

Comments are to describe why not what. A comment, increment A by 1,

for the statement A-A+1 provides no new information. A comment,

increment the table look-,Jp index, is more valuable for under-

standing the logic of the module. The measure is based on the

number of modules in which comments do not explain the wny's.

SD.3 Oescriptiveness of Implementation Language Measure (implementation

phase at system level). The metric is the sum of the scores of the following

applicable elements divided by the number of applicable elements.

(1) High Order Language used.

An HOL is much more self-descriptive than assembly language. The

measure is based on the number of modules which are implemented,

in whole or part, in assembly or machine language.

(2) Variable names (mnemonics) descriotive of physical or fjnc:tonal

property represented.

While the metric appears very subjective, it is iuite easy :

identify if iariaole names have been chosen with sel-

descriptiveness in rind. Throe variable names such is KAME.

POSIT, SALRY are far better and more eas'I -- cogni:ed 3s :e,-
ter than Al, A2, A3. The measure is based on -he number r

modules which -do not lititize descriptive names.

(3) Source code logically blocked and indented.

Tecnniques such as blocking, paragraphing, indenting for specifi:

constructs are well established and are to be followed uni'crmIly

with a system. This measure is based on the number of nodules

which do not comply with a uniform -echnique.

4) One statement per line.

The use of :ontinuation statements and multiple statements oer line

causes difficulty in reading the code. The measure is the number

of continuations plus the number of multiple statement lines diviootl

by the total number of lines for each module and then averaged over

all of the modules in the system.

Execution Effi ci ency

EE.l Performance Requirements allocated to design (design phase at system

level). Performance requirements for the system must be broken down and

allocated appropriately to the modules durina the design. This metric simply

identifies if the performance requirements have (I) or have not (0) been

allocated during the design.

EE.2 Iterative Processing Efficiency Measure (design and implementation

ohases at module level first). The metyic at the module level is the sum of

the scores of the following applicable elements divided by the number if

elements. At the system level it is an averaged score for all of the modules.

,1) Non-loop dependent computations kept out of looo.

Such practices as evaluating constants in a loop are 'o be avoided.

This measure is based on the number of non-loop dependent s.itemen's

- IP

AD-All 501 AIR FORCE INST OF TECH WRIS44T-ATTERSON AFS 0O4 SC*00-ETC F/6 912
SOFTWARE SUALITY METRICS: A SOFTWARE 14ANASEMENT NONITORINS NETH-ETC (U)

LC MR " 5 .J JARZOMEK

U LASSIFIEO A I/9CS/MA/&*N-l 1

found in all loops in a module. This is to be measured from a

detailed design representation during design and from the code

during implementation.

(2) Performance Optimizing Compiler/Assembly language used (implementation

only).

This is a binary measure which identifies if a performance optimizing

compiler was used (1) or if assembly language was us.d to icccmplish

performance optimization (1) or not (0).

(3) Compound expressions defined once (implementation only).

Repeated compound expressions are to be avoided from an efficiency

standpoint. This metric is based on the number of compound

expressions which appear more than once.

(4) Number of overlays.

The use of overlays requires overnead as far as processing time.

This measure, the inverse of the number of overlays, reflects that

overhead. It can be applied during design when the overlay scheme

is defined and during implementation.

(5) Free of bit/byte packing/unpacking in loopos.

This is a binary measure indicating the overhead involved in 3 t/byte

packing and unpacking. Placing these activities within loops ;hould

be avoided if oossible.

1I,
IL

__ • I " ,- J--'" " '--.... "= ; F

k61 Module linKages (implementation only, requires execition).

This measure essentially represents the inter-module :cmmunnc3tion

overhead. The measure is based on the amount of execution time

spent during module to module communication.

'7) Operating System linkages (imolementation only, requires execution).

This measure represents the module to OS communication overhead.

The measure is based on the amount of execution time spent during

module to OS communications.

(8) Efficient Use of storage facility.

This measure represents an evaluation of the utility of the 3torage

facility.

EE.3 Data Usage Efficiency Measure (design and imvlemeitation phases applied

at module level first). The metric at the module level is the sum of the

scores of the following applicable elements divided by the number of applicable

elements. The system metric is the averaged value of all of the ,odule metric

values.

(W) Data grouped for efficient processing.

The data utilized by any module is to be organized -n the data base,

buffers, arrays, etc., in a manner which facilitates efficient

processing. The data organization during design and implementation is

to be examined to provide this binary measure.

'2', Iariables initialized when declared (implementation onl/,.

This measure is based on the iumber of iar~ables used in a -nodule

which are not initialized when declared.

IR4

Efficiency is lost when variab es are initialized during execution

of a function or repeatedly initialized during iterative processing.

(3) No mix-mode expressions (implementation only).

Processing overhead is consumed by mix-mode expressions which are

otherwise unnecessary. This measure is based on the number of mix-

mode expressions found in a module.

(4) Common choice of units/types.

For similar reasons as expressed above (3) this convention is to be

followed. The measure is the inverse of the number of operations

performed which have uncommon units or data types.

(5) Data indexed or referenced for efficient processing.

Not only the data organization, (1) above, but the linkage scheme

between data items effects the processing efficiently. This is a

binary measure of whether the indexing utilized for the data was

chosen to facilitate processing.

Storage Efficiency

SE.1 Storage Efficiency ,Measure (design and implementation phases at module

level first then system level). The metric at the module level is the sum of

the scores of the following applicable elements divided by the number of

applicable elements. The metric at the system level is the averigea value of

all of the module metric values.iT'
(1) Storage Requirements allocated to design (design phase onl, .

The storage requirements for the system are to te 3llc3tO '. the
individual modules during Jesign. This measure :s a b)nary measure

of whether that allocation :s exlicly made I or 'lot '.

+'i

Am

(2) Virtual Storage Facilities Used.

The use of virtual storage or paging techniques enhances the

storage efficiency of a system. This is a binary measure of whether

these techniques are planned for and used (1) or not (0).

(3) Common data defined only once (Implementation only).

Often, global data or data used commonly are defined more than

once. This consumes storage. This measure is based on the number

of variables that are defined in a module that have been defined

elsewhere.

(4) Program Segmentation.

Efficient segmentation schemes minimize the maximum segment length

to minimize the storage requirement. This measure is based on

the maximum segment length. It is to be applied during design when

estimates are available and during implementation.

(5) Dynamic memory management used.

This is a tnary measure emphasizing the advantages of using dy-

namic memory management techniques to minimize the amount of

storage required during execution. This is planned during design

and used during implementation.

(6) Data packing used (implementation only).

While data packing was discouraged in EE.2 (5) in loops because of

the overhead it adds to processing time, in general it is bene-

ficial from a storage efficiency viewocint. This binary measure

applied during implementation recognizes this 'act.

*-1

1 i

,7) Storage optimizing compiler/assemoiy language used (implementation

only).

This 3inary measure is similar to EE.2 (2) except from the view-

point of storage optimization.

Access Control

AC.1 Access Control Checklist (all three phases at system level).

The metric is tne sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) User I/O Access controls provided.

Requirements for user access control must be identified during the

requirements phase. Provisions for identification and password

checking must be designed and implemented to comply with the require-

ments. This binary/ measure applied at all three phases identifies

whether attention has been placed on this area.

(2) Data Base Access controls provided.

This binary measure identifies whether requirements for data base

controls nave oeen specified, designed and the capabilities imple-

mentated. Examples of data base access controls are authorization

tables and privacy locks.

187

16 ..

(3) Memory protection across tasks.

Similar to (1 and (2) above, this measure identifies the pr-gresslon
from a requirements statement to implementation of memory protection

across tasks. Examples of this type of protection, often times pro-

vided to some degree by the operating system, are preventing tasks from

invoking other tasks, tasks from accessing system registers, and the

use of privileged commands.

Ac:ess Audit

M.1 Access Audit Checklist (all three phases at system level).

The ;etric is the averaged score of the following two elements.

(1) Provisions for recording and reporting access.

A statement of the requirement for this type capaoility must exist in

the requirements specification. It is to be considered in tie design

specification, and coded during implementation. This binary metric

applied at all three phases identifies whether these steps are
being taken. Examples of the provisions which might be considered

would be the recording of terminal linkages, data file accesses,

and jobs run by user identification and time.

(2) Provisions for immediate indication of access violation.

In addition to (1) above, access audit capabilities required
might include not only recording accesses but immediate identifica-

tion of unauthorized accesses, whether intentional or nct. 7his

measure traces the requirement, design, and imolementat'on o.
provisions for this c.apabilit.

Operaoility

OP.l Operability Checklist (all three phases at system level).

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) All steps of operation described.

This binary measure applied at all three phases identifies whether

the oRerating characteristics have been described in the require-

ments specification, and if this description has been transferred

into an implementable description of the operation (usually in an

operator's manual). The description of the operation should cover

the normal sequential steps and all alternative steps.

(2) All error conditions and responses appropriately described to

operator.

The requirement for this capability must appear in the requirements

specification, must be considered durinq design, and coded during

implementation. Error conditions must be clearly identified by

the system. Legal responses for all conditions are to be either

documented and/or prompted by the system. This is a binary mea-

sure to trace the evolution and implementation of these capabilities.

(3) Provisions for operator to interrupt, obtain status, save, modify,

and continue processing.

The capabilities provided to the operator must be considered during

the requirements phase and then designea and implemented. -xamoles

of operator capabilities include halt/resume 3nd check oointing.

>1This is a binary measure to trace the evolution of these

capabilities.

(4) Number of operator actions reasonable (implementation only, re-

,uires execution).

'Tie number of ioerator rars-i -an be rl ted 4rlC y 'V o 1 e iumte-

if actions reouirel during i ';me oericd. This measure is *ased 'n

the amount of tme spent iequ4-4nq anual)0pritor icm)n ividej
r'. :'e :oral time required r '..ie "',b.

n7 V)b

- . ..

(5) Job set up and tear down procedures described (implementation only).

The specific tasks involved in setting up a job and completing it

are to be described. This is usually documented during tne imple-

mentatlon phase when the final version of the system is fixed.

This is a binary measure of the existence of that description.

(6) Hard copy log of interactions maintained (design and implementation

phases).

This is a capability that must be planned for in design and coded

during implementation. It assists in correcting operational errors,

improving efficiency of operation, etc. This measure identifies

whether it is considered in the design and implementation phases (1)

or not (0).

(7) Operator messages consistent and respbnses standard (design and

implementation phases).

This is a binary measure applied during design and implementation to

insure that the interactions between the ooerator and the system are

simple and consistent. Operator responses such as YES, NO, GO, STOP,

--e concise, simple, and can be consistently used throughout a system.

Lengthy, differently formated responses not only provide difficulty

to the operator but also require complex error checking routines.

Traininl

.1 !'raining Checklist (design and implementation at system level). The

m etric is the sum of the scores of the following applicable elements divided by

A the number if applicable elements.

() Lesson Plans/Training Material developed for operators, end .isers,

-imaintainers (implementation ohase only).

This is a binary measure of whether this tyoe'locumentation "s

orovided during the imolement3tion phase.

9

(2) Realistic simulated exercises provided (implementation only:.

This is a binary measure of whether exercises which represent the

operational environment, are developed during the implementation

phase for use in training.

(3) Sufficient 'help' and diagnostic information available on-line.

This is a binary measure of whether the c3pability to aid the

operator in familiarization with the system has been designed and

built into the system. Provision of a list of legal commands or a

list of the sequential steps involved in a process are examples.

Conmunicati veness

CM.1 User Input Interface Measure (all three phases at system level).

The metric is the sum of the scores of the following applicable elements divi-

ded by the number of applicable elements.

(1) Oefault values defined (design and implementation).

A method of minimizing the amount of input required is to provide

defaults. This measure, appli.d during design and implementation,

is based on the number of defaults allowed divided by the total

number of input parameters.

(2) Input formats uniform (design and implementation).

The greater the number of input formats there are the more ii cficul

the system is to use. This measure is ba~.ed on th~e total i'mber cf
inout formats.

,3) Each input record self-identifying.

input records wnich have self-identifying codes enhance the iccur1c,

of user inputs. This measure is based on the numoer if inout

records that are not self identi 'ing Jivided tv the tootal -iimmer i-

input recordS. -" to 'e 3ool d i !s - n ind i m enrt'-n.

II

* & .. a
I

(4) Input can be verified by user prior to execution (design and

implementation).

The capability, displaying input upon request or ecnoing the input

automatically, enables the user to check his inputs before

processing. This is a measure of the existence of the design and

implementation of this capability.

(5) Input terminated by explicitly defined logical end of input (design
Ir and implementation).

The user should not have to provide a count of 'input cards. This is

a binary measure of the design and implementation of this capability.

(6) Provision for specifying input from different media.

The flexibility of input must be decided during the requirementn

analysis phase and followed through during design and implementation.

This is a binary measure of the existence of the consideration

of this capability during all three phases.

C¢,.2 User Output Interface Measure (all three ohases at systzm level).

The metric is the sum of the scores of the following applicable elements divided

by the number of applicable elements.

(2) Selective Output Controls.

The existence of a requirement for, design for, and implementation

of selective output controls is indicated by this binary measure.

Selective controls include choosing specific outputs, output fo-mats,

. amount of output, etc.

.2) Outouts have unique descript~ve user oriented labels design and

imolementation only).

This is i binary measure of the design and implementation o' un-que

outout laoels. in add tion, .ie l be s re to ne desc:'ot'.e l t~e

user. Th: s ; ncludes iot ,ni, -he label ; mnicn irre 'jsel 'o

in oU:utnu sgoor, our. 3 iso - it', :Ol-imn iei Ilnqs$. t . , h n a,

r nort.

, j

(3) Outputs have user orientad units (design and implementation;.

This is a binary measure which extends i2' above to the individual

output items.

(4) Uniform output labels (design and implementation).

This measure corresponds to CM.1 (2) above and is the inverse of

the number of different Output formats.

(5) Logical groups of output separated for user examination (design

and implementation).

Utilization of top of page, blank lines, lines of asterisks, etc.,

provide for easy identification of logically grouped output. This

binary measure identifies if these techniques are used during design

and implementation.

(6) Relationship between error messages and outputs is unambiguous

(design and implementation).

This is a binary measure applied during design and implementation

which identifies if error messages will be directly related to the

output.

(7) Provision fo;" redirecting output to different media.

This is a binary metric which identifies if consideration is -liven

to the capability to redirect output to different media dur'nq

requirements analysis, design, and implementation.

Software System Independence
.3.1 Software System Independence Measure (design and imolement3t'on onases

at system level). The metric is the sum of the scores of the fo11owina appi',-

able elements divioed by the numoer of aoplicable elements.

) 3ependence on Software Systam Itility programs.

The more itility programs, library routines, ind other system

facilities that are used within a system, the more dependent

the system is on that software system environment. A SORT

utility in one operating system is unlikely to be exactly

similar to a SORT utility in another. This measure is based

on the number of references to system facilities in a module

divided by the total number of lines of code in the nodule.

It is to be applied during design and implementation.

(2) Common, standard subset of language used.

The use of nonstandard constructs of a language that may be

available from certain compilers cause conversion problems

when the software is moved to a new software system environment.

This measure represents that situation. It is based on the

number of modules which are coded in a non-standard subset of

the language. The standard subset of the language is to be

established during design and adhered to during implementation.

'I i

Machine Independence

M.1 Machine Independence Measure (design and implementation at system levei).

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Programing language used available on other machines.

This is a binary measure identifying if the programming language

used is available (1) on other machines or not (0). This means

the same version and dialect of the languaqe.

(2) Free from input/output references.

Inout and output references bind a module to the current macnine con-

figuration. Thus the fewer modules within a system that contain

input and output references, the more localized the problem oecomes

when conversion is considered. This measure represents that fact

and is based on the number of I/O references within a -nodule.

It is to be applied during design and implementation.

(3) Code is independent of word and character size (implementation only).

Instructions or operations which are dependent on the word or

character size of the machine are to be either avoided or param-

etric to facilitate use on another machine. This measure applied

to the source during implementation is based on the number of

modules which contain violations to the concept of independence of

word and character size.

A '.1) Data representation machine independent (implementation ,ni

The naming conventions (length) used are to be standard or :Q-m-

patlible with other machines. This measure is based on 'he number

of modules which contain variables which do not conformi o itandarf

data representations.

1 r,

:ommun i cat i ons Commonal i .:t'
CC.. Communications Commonality Checklist (all three ohases at system
level:. The metric is the sum of the scores of the following applicable

elements divided by the number *f applic3ble elements.

(1) Definitive statement of requirements for communcation 4ith)ther
systems (requirements only).
During the requirement phase, the communication requirements

with other systems must be considered. This is a binary measure of
the existence of this consideration.

(2) Protocol standards established and followed.
The cunumi.n-ition protocol standards for communicatir,:i ith)ther
systems are to be established during the lesign Phase 4nd ollcwea
durinq implementation. -iis binary measur' aoolied at each)f
these Phases ind'cates whether the sta7,iards wera established and
followed.

(3) Single module inter-ac., .r inout ¢rom r.
The more modules which nandle input ,Jt it 4s to
interface with another sys:eri .nr jndard orotocol;.
This measure based on the inverse i-.r e ujTF-t of modules wnich

handle input is -o oe ao0lied to the !esiln szecification ind sourca

code.

(4) Single module interface :or cutout to 3nother ;vstem
For similar reasons as 3) 3bove this measure ; 'he invprs, "

;j the number of output *iiccles.

: Oara ,ommonal i ty

'C.i Oata Commonality Checkl's. '311 -_nr:e nhases at s.,stenm eve "'

'nr, s thie sum 3i '.he scores f -he -<>'',w'nq i0 icacle -il~mn-i ,

:v .e number if IDV.ble eleven

Ir)..

(1) Definitive statement for standard data representation Oor communica-

tions with other systems (requirements only).

This is a binary measure of the existence of consideration for

standard data representation between systems which are to be interfaced.

This must be addressed and measured in the requirements phase.

(2) Translation standards among representations established and followed
(design and implementation).

More than one translation from the standard data representations used

for interfacing with other systems may exist within a system. Standards
for these translations are to be established and followed. This binary

measure identifies if the standards are established during desiqn and
followed during implementation.

(3) Single module to perform each translation (design and implementation).
For similar reasons as CC.1 (3) and (4) above, this measure is the

inverse of the maximum number of modules which perform a translation.

Conciseness
CO.1 Halstead's Measure (implementation phase at module level first then system
level). The metric is based on Halstead's concept of lenath (rHALSM77]).
The observed length of a module is

No N, + N2 where:
N1 total usage of all operators in a module
N2 - total usage of all operators in a module

The calculated length of a module is

'c 2 n1log 2nI + n2log2ng where:
ni 2 number of unique operators in a module

, j~n2 * number of unique operators in a module

.he -metric is normalized as follows:

1 c 101 or,

I Ic - 4 3 ireater than I
0

At 3 s/stem 'vel the metric is the aver~aea value ,f il h.odl j . re !-
lalues.

1')7

APPENDIX D

METRIC ALGORITHMS

(Refs 17, 23)

NMWRIC ALGORITHMS

The mnetric scores a"e automatically calculated by the ANT after

the data is input from the metric vorkeheets. This appendix lists

the algorithms used to compute the metric scores. They are listed

according to SDLC phases and according to system level or module level

application.

REWRVOTS- SY9M3 LEME

CPA1 - (WSI.I.2 + ((WS1.I.3 - WS1.L.4)/WS1.1.3) +

((WSI. 1.1 - WSI1I.5)/WSI.I.1) + ((WSI.I.1 -WS1.I.6)/WSI.I.1)+

WS1.9 + (WSJ.I.11/WS1.I.1O))/6

AY.1 *(WS1.II.1 + WSI1.2)/2

ET.2 -(WS1.JI.3)

ET.-': (WSJ.1J.4)

ET.4 *(WS1J.5)

ET.5 *(WSI11.6)

AC.1 -(WSI1I.1 + WS1.1II.2 + WSI1I.3)/3

AA.1 (WSIII1.4 +WS1.III.S)/2

OP.1 - (WS1.IV.] + WSI.TV.2 +WS1.IV.3)/3

CM.1 -(WSI.IV.)

CC.] (WS1.IV.1)

DC.1 (WI.VI.2)

DESIGN - SYSTEM LEVEL

TR.l - WS2a.I.1

CP.1 - (((WS~a.I.2 - WS2a.I.4)/WS2a.I .2) + ((WS2a.I .2 -WS2a.1.3)/WS2a.I.2) +

(WS2a.I.2 - WS2a.1.5)/WS2a.I.2) + ((WS2a.I.6 - WS2a.I.7)/WS2a.I.6))/4

AY.1 - WS2a.II.1

ET.l - (WS2a.II.2 + ((WS2a.II.4 * WS2a II.5)/WS2a.II.3p)/2

ETA4 - WS2&.II.6

ET.5 - WS2a.II.7

SI.1 - (WS2a.IJI.l + (l/WS2a.IX.l) + (WS2a.IX.3/WS2a.IX.l))/3

If WS2a.IX.1 - 0 Set S1.1 to Value of WS2a.III.1

MO0.2 - (1 - (Wa.III.4/Wa.III.2))

GE.l - (Wa.III.4/Wa.III.2)

* IN.1 - ((WS~a.VIJI.4/WS2a.VIII.3) o (WS2a.VIII.2/WrS2a.VII1.l))/2

IN.2 - U(WS2a.VIjI.6/WS2a.V111.5) + (WS2a.VIII.8/WS2a.VIII.7))/2

1N.3 - ((WS2a.VIII.l0/WS2a.VIII.9) + WS2a.VJII.11)/2

EE.2 *((l/WS2a.IV.8) + WS2a.VI.7 + WS2a.IV.4 +

((WS2a.IV.9 -WS2a.IV.l0)/WS2a.IV.9))/4

DESIGN -SYSTEM LEVEL

EE.3 -WS2a.!V.6

SE.1 =(WS2a.IV.] + WS2a.IV.2 + WS2a.IV.3)/3

AC.] (WS2a.V.] + WS2a.V.2 + WS2a.V.3))/3

AA.1 *WS2a.V.4

OP.1 *(WS2a.VII.1 + WS2a.VIJ.9 + WS2a.VII.1O +

WS2a.VII.6 + (0 - (WS2a.VII.8/WS2&.VII.7)))/5

TN.1 *WS2a.VII.13

CM.1 *((WS~a.VII.16/WS2a.VII.15) + (1/WS2a.vII.14) +

(1 7 (WS2a.VJI.17/WS2a.VII.15)) * WSa.VII.18 +

WS2a.VII.19 + WS2a.VII.20)/6

CM.2 =(WS2a.VII.21 + WS2a.VII.22 + WS2a.VII.23 + (1/WS2a.VII.24) +

WS2a.VII.25 + WS2a.VII.26 + WS2a.VII.27)/7

CC.1 *(WS2a.VI.2 + WS2a.VI.3 + (1/WS2a.VI.4))/3

DC.1 *(WS2a.VI.5 + WS2a.VI.6 + 1/WS2a.VI.7)/3

Cl

IMPLE'MENTATION -SYSTEM LEVEL

CP.1 - ((- (Wa.I.4/Wa.I.2)) +(I (WS2a.I.3/WS2a.I.2))

(I/WS2a.I1.5))/3

ET.1 I (WS2a.II.2 + ((WS2a.1I.4 + WS2a.II.5)/WS2a.II.3))/2

ET.4 -WS2 a. 11.6

ET.5 -WS2a.11. 7

SI.1 - ((WS2a.JX.2/WS2a.IX.1) + (1/WS2a.IX.1))/2

MO.2 - (1 - WS2a.III.4/WS2a.III.2)

GE.1 - (WS~a.IJI.4/WS2a.1II.2)

IN.] ((WS2a.VIII.2/WS2a.VIII.1) + (WS2a.VIII.4/WS2a.VIII.3))/2

IN.4 = ((WS2a.VIIT.6/WS2a.'l'2.5) + (WS2a.VIII.8/WS2a.VIII.7))/2

IN.3 =((WS2a.VIII.1O/WS2a.VIII.9) + WS2a.VIII.11)/2

EE.2 -((]/WS2a.IV.8) + ((WS2a.IV.1O - WS2a.IV.11)/WS2a.IV.9))/;?

EE.3 - WS23.IV.6

SE.1 - (WS2a.IV.2 +WS2a.IV.5 + (1 - (WS2a.IV.1O/WS2a.IV.9)) + WS2a.IV.3)/4

AC.1 w(WS2a.V.1 + WS~a.V.? + WS2a.V.3)/3

IMPLEMENTATION -SYSTEM LEVEL

AM. WS2a.V.4

OP.] (WS2a.VIJ.1 + WrS2a.VII.9 + WS2a.V[I.1O + (I WS2a.VII.3/WS2a.VII.4)

WS2a.VII.5 + WS2a.VII.6 + (1 - (WS2a.VII.8/WS2a.VII.7)))/7

TN.1 a(WS2a.VII.11 + WS2a.VII.12 + WS2a.VII.13)/3

CM.1 ((WS2a.VII.16/WS2a.VII.15 + (1/WS2a.VII.14) +

(WS2a.VIJ.17/WS2a.VlI.15) + WS2a.VII.18 + WS2a.VIJ.19 + WS2a.VII.20)/6

CM.2 -(WS2a.VII.21 + IS2a.VII.22 + WS2a.VJI.23 + (1/WS2a.VII.24) +

WS2a. VII.25 + WS2a.V!I.26 + WS2a.VII.27)/7

CC.1 *((1/WS2a.VI.l) +WSUa.V.2 + WS2a.VJ.3 + (1/WS2a.VI.4))/4

OC.1 *(WS2a.VI.5 WS2a.VI.6 +(1/WS2a.VI.7))/3

20

DESIGN -MODUJLE LEVEL

CP.1 a(WS2b.I.1 + (1/WS2b.1.2) + WS2b.I.3 + (1 -WS2b.I.6/WS2b.I.4))/4

CS.1 * (WS2b.VIII.1 + WS2b.VIII.2 +WS2b.VI[.3 +WS2b.VI[I.4)/4

CS.2 - (WS2b.VIII.5 + WS2b.vIII.6)/2

AY.1 - WS2b.II.2

ET.1 - WS2b.II.1

ET.2 - (WS2b.1I.3 + WS2b.II.4 + WS2b.II.5 + WS2b.II.6)/4

ET.3 a (WS2b.II.1 + WS2b.II.8 + WS2b.1I.9)/3

S1.1 - (WS2b.III.5 + WS2b.III.6)/2

S1.3 - 1/WS2b.III.l

* 140.2 - ((WS2b.JV.4/WS2b.IV.3) + WS2b.IV.5 +

WS2b.IV.6 + WS2b.IV.7 + WS2b.IV.8)/5

GE.2 - ((1 - W4S2b.IV.9) + (1/WS2b.IV.1O) +

WS2b.IV.11 + WS2b.IV.12)/4

EX.1 - WS2b.V.1

EX.2 - (WS2b.V.2 + WS2b.V.3)/2

EE.1 -WS2b.VIAl

DESIGN -MODULE LEVEL

EE.2 -(WS2b.VI.3 + WS2b.VI.4)/2

EE.3 - WS2b.V[.5

SS.1 - ((1/WS2b.!V.1) + WS2b.IV.13)/2

MI.1 - (WS2b.IV.14 + 1/WS2b.IV.2)/2

IMPLEME(NTATION - MODULE LEVEL

TR. I - WS3.11l.4

CP.1 - (WS2b.I.1 + 1/WS2b.I.2 +WS2b.I.3 +(I WS2b.I.6/WS2b.1.4))/4

CS.1 *(WS2b.VIII.2 + WS2b.VIII.3 + WS2b.VIII.4)/3

CS.2 - (WS2b.V!II.5 +~ 1/WS3.VI.3)/2

AY.1 - (WS2b.I[.2 + WS3.X[.1)/2

ET.1 - WS3.VII.3

ET.2 - (WS3.IV.4 + WS3.IV.5 + WS3.IV.6)/3

ET.3 - ((1/WS3.VII.1) + WS3.VII.2 + WS3.VII.4)/3

IMPLEMENTATION -MODULE LEVEL

S1.1 *(WS2b.III.5 + WS2b.III.6 + WS2b.IIL.7+

(1/(WS~b.III.8 + WS2b.III.9)))4

SI.3 - 1/WS3.I.1O

51.4 - (WS3.I.20 + (1 - (WS3.1.18/WS3.I.2 - WS3.I.4))) +

(I - (WS3.I.15/WS.I.14)) + (1 - (WS3.I.16/wS3.I.14)) +

(I - (WS3.1.17/WS3.I.2)) + (1 - (WS3.1.6/(WS3.I.2 - WS3.I.4))) +

1/WS3.I.9 +(1 - ((WS3.I.lO - wS3.1.l1)/(WS3.1.2 - WS3.I.4))) +

(1 - ((WS3.1.12 - WS3.I.13)/(WS3.1.2 - WS3.1.4))) +

(WS3.VI.l/(WS3.VI.i + WS3.VI.2)) +

(1 - ((WS3.VI.1 + WS3.VI.2)/(WS3.I.2 - WS3.I.4))))/l

t40.2 - (WS3.I.l + WS3.V.5/WS3.V.3 +1/WS3.V.4+

1/WS3.V.6 +WS3.V.7 + WS3.V.8 + WS3.V.9 + WS2b.IV.8)/8

For wS3.I.1 _100 then 0
For WS3.I.1 100 then 1

ciE.2 *(WS2b.IV.9 + 1/WS3.IX.2 + WS3.X.2 + WS3.X3)/4

If WS3.IX.2 *0 Set 2nd term to 1

EX.] (WS2b.V.l (WS3.XI.7f(WS3.XI.4 + WS3.XI.5 + WS3.XI.6 +WS3..XI.7)))/2

EX.2 *(WS3.X.4 +WS3.X.1 + (WS3.x1.5 -wS3.XI.4)/WS3.XI.5))/3

50.1 *WS3.1II.2/WS2.I.2

If SO.] I Set to I

IMPLEMENTATION -MODULE LEVEL

SD.2 *(WS3.III.3 + WS3.III.11 + 1/WS3.III.5 +

WS3,1II.6 + WS3..III.7 + 1/WS3.Ill.8 + WS3.1IJ.1O)/7

SD.3 -((1 - WS3.I.3/WS3.I.1) + WS3.1IL.9 + WS3.III.11 +

EE.2 = I (WS3.Vi[I.3/WS3.I.14)

EE.3 - ((WS3.VIII.2/(WS3.VI.l WS3.VI.2)) +

(I - WS3.VIII.l/(WS3.I.2 - WS3.I.4))+

1/WS3.VI.4 + WS2b.VI.5 + (1 - (WS3.xI.9/(WS2a.IX.1)))/5

SS.1 *((WS3.V.2/(WS3.I.2 -WS3.I.4)) +WS2b.IV.13)/2

MI.'1 =(WS2b.IV.14 + (1I ((WS3.IV.1 + WS3.IV.2)/(WS3.I.2 -WS3.I.4)))

WS3.IX.] +

(1I (WS3.IX.2/(WS3.I.2 -WS3.1.4))) + WS3.JX.3)/5

APPENDIX E

DEFINITION OF QUALITY ATTRIBUTES

A

DEFINITION OF QUALITY ATTRIBUTES

The software quality attributes (factors or criteria)
contained in this appendix are found in the literature.
The authors of the quoted or paraphrased definitions are
indicated in parentheses.

ACCEPTABILITY

- how closely the ADP system meets true user needs (Kosy)

- measure of how closely the computer program meets the
true needs of the user (SAMSO)

- relates to degree to which software meets the user's
needs including the clarity and unambiguity of the
specifications and the effectiveness of the man-machine
interface (USA ISRAD)

- does the software meet the need of the user (Light)

ACCESSIBILITY

- extent that software facilitates the selective use of
its components (Boehm)

- those attributes of software that provide for an audit
and control of the access of software and data (McCall)

ACCOUNTABIT.Eury

- extent that code usage can be measured (Boehrn)

ACCURACY

- the degree of exactness of the data contain-d in a
product unit (Cho)

- where mathematically possible a routin- should qiven an
approximation that is as close as practicab], to th
full machine precision for whatever machin- it is
running on (Schonfelder)

• I,)

extent that its outputs are sufficiently precise to
satisfy its intended use (Boehm)

the mathematical calculations are correctly per-
formed (Rubey)

measure of the quality of freedom from error, degree of
exactness possessed by an approximation or measure-
ment (Gilb)

ADAPTABILITY

- how much time and effort are required to modify a soft-
ware system (Kosy)

- measure of the ease with which a program can be altered
to fit differing user images and system con-
straints (Poole)

- measure of the ease of extending the product, such as

adding new user functions to the product (Myers)

- a measure of the effort required to modify a computer
program to add, change or remove a function or use the
computer program in a different environment (includes
concepts of flexibility and portability) (SAMSO)

- relates to ability of software to operate inspite of
unexpected input or external conditions (USA iSRAD)

AVAILABILITY

- fraction of total time during which the system can
support critical functions (SADPR-85)

- error recover and protection (Liskov)

- probability that a system is operating sati.sfactorily
*. !at any point in time, when used under stated condi-

tions (Gilb)

COMMUNICATIVENESS

i - extent that software facilitates the specifications of
inputs and provide outputs whose form and content are
easy to assimilate and uFeful (Boehm)

COMPATA BILITY

- measure of portability that can be expected of systems

1)10

when they are moved from one given environment to
another (Gilb)

COMPLETENESS

- extent to which software fulfills overall mission
satisfaction (McCall)

- extent that all of its parts are present and each of its
parts are fully developed (Boehm)

COMPLEXITY

- relates to data set relationships, data structures,
central flow, and the algorithm being imple-
mented (Richards)

- measure of the degree of decision-making logic within
a system (Gilb)

CONCISENESS

- the ability to satisfy functional requirements with a
minimum amount of software (McCall)

- extent that no excessive information is present (Boehm)

CONS I STENCY

- degree to which software satisfies specil'ica-
tions (McCall)

- extent that it contains uniform notation, terminology,
and symbology within itself and the exte'nt that the
content is traceable to the requirements (Boehm)

CONVERTIBILITY

- degree of success antici ated in readying p'-opi,
machines, and procedure s to support the '-ystem
(SADPR-85)

CORRECTNESS

correctness of its des-cription with respect to the
objective of the softwira as specified by the semantic
description of the linguistic level it d.4ino (Der ni.

- the coding of a computer program mo-],jl 4hir-7h pr, perly

"'=_ j+ .+ .,i

and completely implements selected overall system
requirements (NSSC PATHWAY)

relates to degree to which software is free from design
and program defects (USA ISRAD)

the program is logically correct (Rubey)

COST

- includes not only development cost, but also the costs
of maintenance, training, documentation, etc., on the
entire life cycle of the program (Wulf)

- there are three major categories of cost:

Economy of operation - relates to cost or operating
system

Economy of modification - relates to cost of making
changes to software to meet new requirements or correct
defects resulting in errors in requirements, design,
and programming

Economy of development - relates to cost of entire
development cycle from identification of requirement to
initial operation

- development and maintenance costs (Myers)

- implementation cost and operational cost (Gilb)

DOCUMENTATION

quality and quantity of user publications which provide
ease of understanding or use (Myers)

EFFICIENCY

- capability to accomplish functions with minimum
resources (Cho)

- measure of the execution behavior of a program (execu-
tion speed, storage speed) (Myers)

- execution time, storage space, # instructions, pro-
cessing time (Kosy)

- extent that software fulfills its purposn without waste-
of resources (Boehm)

the ratio of useful work performed to the total Pnergy

1;

expended (Gilb)

- the amount of computing resources and code required by a
program to perform a function (McCall)

- reduction of overall cost - run time, operation, mainte-
nance (Kernighan)

- extremely fast run time and efficient overlay capa-
bilities (Richards)

- computation time and memory usage are optimized (Rubey)

EXPANDABILITY/FLEXI BILITY/AUGMENTABILITY

- attributes of software that provide for expansion of
data storage requirements or computational
functions (McCall)

- extent to which system can absorb workload increases
and decreases which require modification (SADPR-85)

- the ability of a system to immediately handle different
logical situations (Gilb)

- how easily the software modules comprising the system
or subsystem can be rearranged to change the system's
functions without modifying any of the modules (Kosy)

- ease of changing, expanding, or upgrading a
prograr (Yourdon)

- the software modules must be usable in a variety of
contexts (Culpepper)

- includes changeability; e.g., the ease of correction
bugs, maintenance because of changing specifications,
and portability to move to another system (Ledgard)

- extent that software easily accommodate s expansions in
data storage requirements or component computationalA functions (Boehm)

S.- attributes of software which allow quick response to
- changes in algorithms (Richards)

- ability to reuse the software and transtCer it to another
processor (includes reuse, adaptability, transferability
and versatility of software) (Light)

EXPRESSION

- how a program is expressed determines in large imasurp

.... ... o n

the intelligibility of the whole (Kernighan)

EXTENSI BILITY

- extent to which system can support extensions of criti-
cal functions (SADPR-85)

GENERALITY/REUSABILITY

- those attributes of software that provide breadth to the
functions performed (McCall)

- measure of the scope of the functions that a program
performs (Myers)

- building programs from reusable software modules can
significantly reduce production costs (Goodenough)

- how broad a class of similar functions the system can
perform (Kosy)

- standardized modules can be lifted from one program and
used in another without extensive recoding or retest-
ings (Whipple)

- degree to which a system is applicable in different
environments (Gilb)

HUMAN FACTORS

- system should be easy to use and difficult to
misuse (Cho

- every program presents an interface to its human users/
operators, by human factors we refer collectively to all
the attributes that make this interface more palatable:
ease of use, error protectedness, quality of documeta-
tion, uniform syntax, etc. (Wulf)

A - extent that software fulfills its purpose without
wasting user's time and energy or degrading their
morale (Boehm)

- measure of the product's ease of understanding, easr of
use, difficulty of misuse, and frequency of user's
errors (Myers)

INTEGRITY

- extent to which access to software or data by unathor-
ized persons can be controlled (McCall)

2' 1.4

L.-J

how much the operation of one software subsystem can
protect the operation of another (Kosy)

a measure of the degree of protection the computer
program offers against unauthorized access and loss due
to controllable events (includes the concepts of
privacy and security) (SAMSO)

relates to ability of software to prevent purposeful
or accidental damage to the data or software (USA ISRAD)

ability to resist faults from personnel, the security
problem, or from the environment, a fault tolerance
issue (Light)

probablity of system survival when subjected to attack
during a time interval (Gilb)

INTEROPERABILITY

- effort required to couple one system with
another (McCall)

- how quickly and easily one software system can be
coupled to another (Kosy)

- relates to how quickly and easily one software system
can be coupled to another (USA ISRAD)

LEGIBILITY

- extent that its functions and those of its components
statements are easily discerned by reading the
code (Boehm)

MAINTAINABILITY

- ability to keep up with its intended use (Cho)

A; - measure of the efCort and time required to 1ix bugs in
the program (Myers)

- how easy it is to locate and correct errors found in
operational use (Kosy)

- extent that the software facilitates updating to satisfy

new requirements (Boehm)

- maintenance involves

(1) correction to heretofore latent bu'q

2'lr

(2) enhancements
(3) expansion
(4) major redesign (Lieblein)

ease with which a change can be made due to

(1) bug during operation
(2) non-satisfaction of users requirements
(3) changing requirements
(4) obsolescence/upgrade of system (McCall)

probability that a failed system will be restored to
operable condition within a specified time (Gilb;

MANAGEABILITY

- degree to which system lends itself to efficient
administration of its components (SADPR-85)

MODIFIABILITY

- change and enhancement of the system should be easily
implemented (Cho)

- measure of the cost of changing or extending the
program (Myers)

- operational experience usually shows the need for
incremental software improvements (Goodenough)

- extent that it facilitates the incorporation of
changes, once the nature of the desired change has been
determined (Boehm)

- quality of a program that reduces the effort required
to alter it in order to conform to a modification of it,,,
specification (Wulf)

- internal (detailed design) characteristics of a program
module are arranged so as to permit easy change'A (NSSC PATHWAY)

- use of HOL reduces programmer's task and human errors
and allows smaller units to be tested permitting easipr
debugging (Whi,)ple)

- the program is easy to modify (Rubey)

MODULARITY/STRUCTUREDNESS

- extent to which a system urs program -oiistucts for

better readability (Cho)

ability to combine arbitrary program modules into larger
modules without knowledge of the construction of the
modules (Goos)

the software must consist of modules with well defined
interfaces. Interactions between modules must occur
only at those interfaces (Culpepper)

extent that it possesses a definite pattern of organiza-
tion of its independent parts (Boehm)

how well a program is organized around its data repre-
sentation and flow of control (Kernighan)

there is no interference between program entities
(Rubey)

formal way of dividing a program into a number of sub
units each having a well defined function and relation-
ship to the rest of the program (Mealy)

PERFORMANCE

- the effectiveness with which resources of the host
system are utilized toward meeting the objective of the
software system (Dennis)

- refers to such attributes as size, speed, precision;
e.g., the rate at which the program consumes accountable
resources (Wulf)

PORTABILITY/TRANSFERABILITY

- programs must be readily transferable among different
equipment configurations (Goodenough/Culpepper)

- degree of transportability is determined by number,
extent, and complexity of changes, and hence the diffi-
culty in implementing a software processor which can
mechanically move a program, between a specified set of
machines (Hague)

- machine - independence (Marshall)

- measure of the ease of moving a computer program from
one computing environment to another (Meahy, Poole)

- how quickly and cheaply the software system can be con-
verted to perform the same functions ,,sing different
equipment (Kosy)

- an appropriate environment can be provided on most

)17

computers (Goos)

- extent that it can be operated easily and well on
computer configurations other than its current one
(Boehm)

- moving software from one computer (environnent) to
another (Lieblein)

- measure of the effort required to install a program on
another machine, another operating system, or a
different configuration of the same machine (Wulf)

external (black box) form, fit, and function character-
istics of a program module which permit its use as a
building block in several computer programs
(NSSC PATHWAY)

- relates to how quickly and easily a software system can
be transferred from one hardware system to another
(USA ISRAD)

- ease of conversion of a system from one environment to
another; the relative conversion cost for a given con-
version method (Gilb)

- effort required to transfer a program from one hardware
configuration and/or software system environment to
another (McCall)

PRECISION

- the degree to which calculated results reflect
theoretical values (Gilb)

PRIVACY

the extent to which access to sensitive data by unautho-
rized persons can be controlled and the extent to which
the use of the data once accessed can be con-
trolled (McCall)

- relates to the protection level for data in the system

and the individual's right to review and control
dissemination of data (USA [SRAD)

RELIABILITY

- software's ability to perform what it is supposed to do
under defined conditions (Cho)

- includes correctness, testing for errors, and error

tolerance (Ledgard)

the probability that the software will satisfy the
stated operational requirements for a specified time
interval or a unit application in the operational en-
vironment (JLC SRWG)

- the probability that a software system will operate
without failure for at least a given period of time when
used under stated conditions (Kosy)

- extent to which a program can be expected to perform its
intended functions satisfactorily (Thayer)

- ability of the software to perform its functions
correctly in spite of failures of computer system
components (Dennis)

- probability that a software fault does not occur during
a specified time interval (or specified number of soft-
ware operational cycles) which causes deviation from
required output by more than specified tolerances, in a
specific environment (Thayer)

- measure of the number of errors encountered in a
program (Myers)

- extent to which a program can be expected to perform its
intended function with required precision "(McCall)

REPAIRABILITY

probability that a failed system will be restored to
operable condition within a specified active repair
time when maintenance is done under specified condi-
tions (Gilb)

ROBUSTNESS

- ability to continue execution under certain imperfect
conditions (Cho)

routines should be coded so that when it is not possible
to return a result with any reasonable accuracy or there
is a danger of causing some form of machine failure they
should detect this and take appropriate actions
(Schonfelder)

- quality of a program that determines its ability to
continue to perform despite some violation of the
assumptions in its specifications (Wulf)

- program should test input for plausability and

21 19

validity (Kernighan)

SECURITY

- the ability to prevent unauthorized access to programs
or data (Kosy)

- extent to which access to software, data, and facilities
can be controlled (SADPR-85)

- measure of the probability that one system user can
accidentally or intentionally reference or destroy data
that is the property of another user or interface with
the operation of the system (Myers)

- relates to the ability of the software to prevent
unauthorized access to the system or system elements
(USA ISRAD)

SELF-CONTAI NEDNESS

- extent to which a program performs all its explicit and
implicit functions within itself (Boehm)

SELF-DESCRIPTIVENESS/CLARITY

- those attributes of software that provide explanation
of the implementation of a function (McCall)

- measure of how clear a program is, i.e., how easy it is
to read, understand, and use (Ledgard)

- refers to the ease with which the program (and its
documentation) can be understood by humans (Wulf)

- extent that it contains enough information for a reader
to determine its objectives, assumptions, constraints,
inputs, outputs, components, and status (Boehm)

oA SERVICEABILITY

- degree of ease or difficulty with which a system can be
repaired (Gilb)

STABILITY

- the "ripple effect" or how many modules have to be
changed when you make a change (Myers)

- measure of the lack of perceivable change in a system

220

in spite of the occurrence in the environment which
would normally be expected to cause a change (Gilb)

TESTABILITY

- the ease of checking the quality of system outputthrough use of messages (Cho)

- instrumentation and debugging aids (Liskov)

- minimize testing costs (Yourdon)

- provision of facilities in the design of programs which
are essential to testing complex structures (Edwards)

- extent that software facilitates the establishment of
acceptance criteria and supports evaluation of its
performance (Boehm)

- a measure of the effort required to exercise the com-
puter program to see how well it performs in a given
environment and if it actively solves the problem it
was supposed to solve (SAMSO)

- effort required to test a program to insure it performs
its intended function (McCall)

- measure of our ability to test software (Light)

TIME

- two major categories of time:

Modification Time - relates to total elapse time from
point when new requirement or modification is identi-
fied the change is implemented and validated

Development Time - relates to total elapsed time of
development (USA ISRAD)

- development time (Myers)

- what is the expected life span of system (Gilb)

TOLERANCE

measure of the systems ability to accept different forms
of the same information as valid or withstand a degree
of variation in input without malfunction or rejec-
tion (Gilb)

UNDERSTANDABILITY

- meaningful variable names, brief comments, traceable
module interface and data flow (Cho)

- ease with which the implementation can be under-
stood (Richards)

- reduced complexity, reduced redundancy, clear
documentation/notation (Goodenough)

- extent that the purpose of the product is clear to the
evaluator (Boehm)

- documentation remains current (Whipple)

- the program is intelligible (Rubey)

UNIFORMITY

- module should be usable uniformly (Goodenough)

USABILITY/OPERABILITY

- effort required to learn, operate, prepare, input, and
interpret output of a program (McCall)

- measure of the human interface of the program (Myers)

- ease of operation from human viewpoint, covering both
human engineering and ease of transition from current
operation (SADPR-85)

- how suitable is it to the use (Kosy)

- software must be adequately documented so that it can
be easily used and maintained (Culpepper)

- extent that it is convenient and practicable to use
(Boehm)

- the program is easy to learn and use (Riibey)

VALIDITY

- relates to degree to which software implements the
user's specifications (USA [SRAD)

APPENDIX F

SOFTWARE SYSTEM DEVELOPMENT LIFE CYCLE FOR AFLC/LM

(Ref 89)

A

A-
" I

IL

L \1

I F

S I i I I I I S a I

I I

3E

Q I I I I I I I I
.. ~ .i- .- " -';- u

I-

I!

mI
I I I II

:!.. . . - : '

I'III

.- -. L' I :

,, __..... "1"1 ... I1 '''11 11

, ' O. : o
L._ ...4

Reviews

Purpose of Reviews. The purpose of a AFR 300-15 review is to give a protect manager
(PM) and deputy project manager (DPM) a means of assessing and verifying the degree of
completion of tasks related to milestones and: imeans of controlling resources. When a
review has been completed the PM/DPM can give management the information on which
to base a decision to continue, redirect, or end a project. While all reviews have the
common purpose of "assessing and verifying," they also have more specific unique
purposes. An explanation of the unique purpose of each review, as derived from AF
regulations and experience follows:

a. System ReqWrements Review (SRR).

(1) To make sure the requirements documented in the Functional Description
(FD) by the functional OPR (proponent), which are to be satisfied by a data system(s),
are clear, complete, correct and consistent with those in the validated and approved
Data Automation Requirement (DAR).

(2) To make sure the functional OPR and data automation OPR have a mutual
understanding of the requirements in the FD which are to be satisfied t,y the data
system(s).

(3) To make sure the Data Project Plan (DPP), which is the plan for the
managemert, development, and implementation of the system(s), is clear, complete,
correct, and consistent with the direction in the Data Project Directive (DPD).

(4) To form the basis for establishing the Functional Baseline.

b. System Design Review (SDR).

(1) To make sure the functions documented in the System/Subsystem Specifi-
cation (S5), which are needed to satisfy each requirement documented in the FD, have
been assigned (allocated) to specific programs (components) in the data system(s).

(2) To make sure the functions to be carried out by each program in the data
system(s) will satisfy the requirements of the functional OPR documented in the FD.

(3) To make sure all manual (human), automatic data processing equipment
(ADPE), and data system (software) interfaces have been named, defined, and
negotiated.

(4) To form the basis for establishing the Allocated Baseline.

c. Preliminary Design Review (PDR).

(1) To make sure the general (macro) technical design of each program
(component) in the data system(s) is acceptable and will satisfy the requirem'nts of the
functional OPR documented in the FD.

(2) To make sure the programs that make up the data system(s) will satisfy the
requirements of the functional OPR documented in the FD.

d. Critical Design Review (CR).

• , ')l

(I) To nldke sure lite detailed ttcihcal desigf oi eacti prograrwo in the datd
systeirl(s) will sutisf its intended purpose (sdilisy in' requireryients of the tunctiona,
OPKJ prio to prograrninrg (coding).

(2) To make sure all support doctj Tents ((Isers Manual (UM), Operations
Manual (OM), Maintenance Manual (MM), and Test and Irplementation Plan (PT)) are
clear, complete (draft), correct, and consistent with the daia(s) to be programmed.

e. Product Verification Reviek (PVR).

(1) To make sure the product (Computer Program Configuration Item (CPCI))
that has been programmed and tested by data automation satisfies all functional and
technical requirements.

(2) To make sure all associated documentation agrees with the product that
has been programmed.

(3) To make sure the product is ready for furictional user testing (validation
testing) and the preparations for the Test Phase have been completed.

(4) To form the basis for establishing the Product Baseline.

1. System Validation Review (SVR).

(1) To confirm that system performance, as proven during validation testing,
meets the functional OPR (proponents) requirements documented in the FD and DAR(s).

(2) To make sure the system is technically acceptable for operation in a
day-to-day environment.

(3) To make sure all necessary arrangements have been made for implementa-
tion and operational support of the system.

Prepa.ing for Reviews. Preparation is the single most important factor contributing to
the success of any AFR 300-15 review. It's the responsibility of the PM/DPM to see that
preparations for a review are complete before committing external project resources to
it. A description of the activities usually associated with preparing for any review are
named and described in the following subparagraphs. It must be emphasized, these are
activities u associated with preparing for any review. Since each project varies in
scope, compieiity, and direction received, it would be impossible to name all possible
activities associated with each review for all possible projects. Realizing this, each
PM/DPM must fully understand the specific purpose of each review, must comply with
direction and directives in tailoring the review to his/her project, and must make sure all
prerequisite activities are completed prior to a review. The following are the usual
activities.

a. Identifying Items. The PM/DPM must first name the items that will be assessed
and verified for completeness prior to and/or during a particular review. To make this
determination, the PM/DPM should rely on AFR 300-15, Chapter 3, the projects Data
Project Directive (DPD) and Data Project Plan (DPP), as well as Volume 1, Part A of this
handbook. A list of the reviews and the items usually reviewed follow:

(1) SRP - DAR(s), DPD(s), DPP, FD, and all amendments.

226

- Saine aS aovt plujs It S" (SeC~IJOrI! 1, e 3). F ~ prepared),
Ca.'riigurZ io, mnageflt recoras. Mflc pre,-iojs revieA nmutes.

k 3 sarme as above plus trie completLed SS andi E oraff- of tne FT.

14) CDRT - Same as above except fina: FT (less Sezon 2J, PSs, M~ (if prepared)
aric im dr.! of time MM,, Oki. and LIM.

k 5) !'\'I Same as aoove except fina; PT, MA4, OM, and UM.

(6) S\'R -Same as aoove plus the RT.

b. DetermininE Acceptability. The PMIDPM is responsible f or making sure the
item(s) to be reviewea are prepared in accordance with governing directives before

*sendinf it to peo ' ie for revieu. Trie PM/DP'M also has an obligation to make sure, to the
best oil his/her abd~ty, the item~s) is a quadity product tnat will serve its intended
purpose. To make sure a quality item wili be delivered the PM/DPM should, at key
points, monitor the completion of tasks associated with the preparation of the item.
This can be done by scheduling walk-throughs, audits, briefings, interim reports, etc. As
an example, the PM/DPM should revievw the results of the functional systems analysis
tasks, before Sections 2 and 3 of the FD are started /completed. By scheduling and
conducting such internal reviews the PM/DPM can preclude the delivery of items that
have not been prepared according to direction and do not serve the purpose f or which
they were intended.

c. ldentifvznjt Participants. The identification of people to review items and/or
attend reviews is critical to the success of a project. The PM/DPM, working with
functional and development OPRs/OCR&, should find and gain commitment of function-
ally/technically qualified people to review each item and/or attend each review. The
PM/DPM should look on those selected as constructive critics ane not as adversaries.
The following subparagraphs give more specific information to assist the PM/DPM in the
selection of participants:

(1) Those in attendance should be responsible f or (PM/DPM, OPR/OCR)i, or be
able to make a material contribution (based on purpose of the review) to the success of
the project.

(2) It's not necessary for representatives of all functional user organizations
(as opposed to functional OPR/OCR), interfacing data automation organizations (as
opposed to the development OPR/C)CR), or representatives of other interfacing organi-
zations (SAC, AFDSDC, AFAFC, etc.) to be in attendance. However, if needed, the
PM/DPM or functional/development OPR/OCR can ask representatives of user/data
automation /interfacing organizations to review documentation and suppJ% Design Prob-
lems~ Reports (D3PRs)/coordrnation. The PM/D)PM or functional /developn tent OPP may
also ask representatives from these same organizations to act as advisors at review.,
when their attendance will materially contribute to the success of the project.

(3) When the project ma~nager expects controversy or plans changes in the
project which will need review anmd approval (RCB, PMR. CMR, HQ AF. etc.),
representatives from organizations responsible for giving or coordinating on project
dirention (HQ AF/LE/AC, HQ AFLC/AC/SC/XR, AFDSEC. AFA A, etc.) should be in
attendance. The knowledge gains by these representaives will be instrumental in
enauling themt to help in resolving controvers and in forming an organizational position
on proiect direction (continue, redirect, end).

227

(4) The purpose of each review is different, so Darticipation can be different.
As an example, the functional OPR may plan for selected functional users to attend thp
SRR, but not the SDR. Likewise, the development OPR may plan for all lead
programmers to attend the CDR, but not the SRR. Further, the data system support
(DSS) manager may be in attendance at the SRR to answer questions about project
direction in the DPD, but may not attend the CDR because it is not a "baseline" review.

(5) Each project manager, when preparing the DPP for his/her project, should
describe in Section VI of the Configuration Management Plan (CMP), which is an
appendix to the DPP, plans for conducting project reviews and audits. These plans, in
addition to identifying the reviews/audits to be conducted, will name who the reviewing
authorities will be. When the DPP is coordinated, organizations involved in the project
may suggest (with explanations) adding/dropping review participants as proper.

d. Plannin Fformat. The format for a review meeting can vary depending on the
project, the review being conducted, and the preferences of the PM/DPM. The PM/DPM
should always develop and document, in the proposed agenda, the format of the meeting.
In developing the format the PM/DPM should always remember the specific purpose of a
review and see the purpose is served. A general outline for reviews which has proven
successful and keeps the PM/DPM in control follows.

(1) OPenint Remarks - Given by PM/DPM to explain purpose, format, proce-
dures, and administrative matters.

(2) Introductions - Given by PM/DPM to introduce all/key participants and

their roles, relationship to project, and responsibilities.

(3) Project Background

(a) Functional - Given by functional OPR/OCR(s) to explain what is to be, accomplished.

(b) Data Automation - Given by development OPR/OCR(s) to explain how
data automation will be used to satisfy the requirements of the CPR/OCR(s).

(c) Project Management - Given by PM/DPM to explain history of project
to date.

(4) Items to be Reviewed- Given by PM/rlPM to name items to be reviewed,
their purposes, and their relationships.

(5) Review of Items - Led by PM/DPM to assess and verify the completion of
tasks related to milestones.

(6) Summary of Open DPR(s) - Identified by PM/DPM to inform participants of
actions to be completed before review is completed.

(7) Plans for Completing Items - Given by PM/DPM to inform participants of
what actions will be taken when to update/"baseline" review items.

(8) Plans for Coordination - Given by PM/DPM to inform participants of what
co.ordination is needed and when it will be carried out to complete the review.

(9) Future Plans - Giver b% PMJDPM to inform pa-v.ipants o! near terrr
project tasks.

(10) Closing - Given b% PM/DPM.

prprnl da. The PM/DPM is responsible for preparing an atenda whiclh
outlines the format for each review. In additior to raming the major subject and
primary participants, the agenda should include location(sl, clate(s), start-stop times,
break/meal times and other pertinent planning information. The final apenos should
reflect the results of a coordinated planning effort which most effectively makes use of
Air Force time and funds. (Reference Atch 2 for sample agenda)

f. Sendini Material. The PMIDPM is responsible for assembling and sending, with
a letter e! transmittal, the proposed agenda and material to be reviewed. The letter
should be addressed to all participating people/organizations. It should identify what is
being transmitted and explain what is expected of participants prior to attending the
review. As an example the PMIDPM could ask the agenda be reviewed and any proposed
changes called in by a certain date. The PM/DPM could also ask all DPRs be sent no
later than 5 workdays prior to the review. The PM/DPM should consider the amount of
material to be reviewed and allow adequate time for a thorough review of the material
by the participants and enough time for PM/DPM review of the DPRs.

g. Reviewing Design Problem Reports. The PM/DPM should receive all DPRs,
except those prepared at the review, prior to the review meeting. Each DPR should be
reviewed and a coordinated position developed with the OPR/OCR(s) prior to the review.
Those DPRs needing work to resolve that will extend beyond the dates of the 5RR should
have an estimated completion (suspense) date. The DPRs should be assigned control
numbers and entered into the DPR Log. The PM/DPM should determine, based on those
DPRs received, how best to address/present them at the review. As an example, all
administrative DPRs (editorial discrepancies) could be aggregated together and
addressed all together by deliverable rather than individually. The PM1DPM may decide
to modify the review agenda, based on the volume, content, and validity of the DPRs
received.

h. Planning Support. The PM/DPM should make sure all administrative support

details are taken care of prior to a review. These details include, as an example:

(1) Secretarial support.

(2) Lodging and transportation for participants.

(3) Responsibilities of project office people prior/during SRR.

(4) Supplies.

(5) Room(s) for meeting.

Conducting Review Meetings. Next to adequately preparing for a review, propferly
conducting the review meeting is the most important factor contributing to its success.
AFR 300-15 places the responsibility for chairing all reviews on the PM or his/her
designee. The chairperson, for the purpose of this handbook, is considered to be the
PM/DPM, and so it is his/her responsibility to conduct all review meetings. To chair a
review. the PMIDPM must understand the purpose of it and must plan to see its purpose
is satisfied. Said another way, "before leading. you must knou where you are going and

have decioed on how best to get there." The PM/DPM can best satisfy the purpose of a
review by adhering to the "coordinated" agenda he/she should have prepared. The
following subparagraphs give an example of opening a review, conducting a review of
selected items, and closing the review. These subparagraphs were prepared based on the
format in paragraph d above which is assumed to have been incorporated into the agenda:

a. Openinit a Meetin . The PM/DPM opens the review by introducing himself/her-
self. This introduction is followed with an explanation of the purpose of the review.
This explanation should be more than quoting AFR 300- 15. As an example; "The purpose
of this SRR is to review, complete, approve, and place under change control the OPRs
and OCRs ADS requirements defined in the PD. 1 want the considered opinions of those
present as to whether the stated requirements are correct, complete, testable, and
communicate to the end user and development OPR/OCR(s) a clear statement of the
operational capability to be developed. I also want to review certain near-term plarls so
everyone is familiar with their respective responsibilities and tasks." The PM/DPM next
gives an explanation of how he/she intends to satisfy the stated purpose of the review.
As an example, "I will first review the FD, section by section. While reviewing a section,
1 will discuss each DPR against that section and its proposed disposition." The PM/DPM
would then give an explanation of the procedural and administrative details. As an
example, "If there is a need to prepare DPRs during this review, I will identify and
discuss the need and if valid the DPR form will be prepared by the originator, assigned
for action, and given a control number."

Following these opening remarks, the PM/DPM should introduce all participants or key
individuals, such as the functional OFR/OCR(s), development OPRIOCR(s) and people
representing other Commands or services. As the individuals are being introduced, their
relationship and responsibility to the project should be explained. As an example, "Mr A
from the Strategic Air Command is responsible for acquiring B and developing C and
interfacing it with the D part of this project."

Following his/her introduction the functional OPR/OCR(s) should be asked to give an
explanation of what the LMS requirements and benefits are in general terms. Such as:
"This requirement for ADP support is necessary to enable the XYZ organization
to - - - -. If successful it will save SX and decrease response time to - ---. " This
functional background explanation should be followed by an explanation by the develop-
ment of how data automation will satisfy the requirements in the FD. For example: "the
requirements in the FD do not need any special equipment or software, so we will use the
XYZ as configured to satisfy all requirements." The ADP background explanation should
then be followed by a brief background of the project by the PM/DPM. As an example,
"The DAR was approved in March and the DPD was received in April. The project office
was formed in April and the DPP completed in June. People from the ADP organization
and the functional OPR/OCR(s) organization(s) completed their systems analysis in
August. Subsequently, the draft FD was completed and forwarded to each of you in

j December." The PM/DPM would next name the items to be reviewed and vieir
relationship to each other. He/she might say, "The DPP will be reviewed in context 'vith
the direction in the DPD. We received only I minor DPR against the DPP." Following
the agenda, which should orient all participants to the project and give therr an
understanding of what will be done during the review, the PM/DPM begins the review.

Conducting a Review. Following the opening of the meeting, the PM/DPM begins the
review of the first item. As mentioned before, the PM/DPM must tailor the review to
his/her project. If the project is very large and complex and involves large numbers of
people in the review meeting, the review should be more structured so the PM/PPM can
remain in control. If the opposite is true, the meeting can be more informal. In either

case the PM'DPM must realize tna. he/sne is in charge anc is responsible to, naking
sure the purpose of having the revieu is met. The following Da.agraphs addres, each o!
the s:x AF1R 300-15 reviews and gives examples ol how a PM/DPM could conduc, each
review meeting. Within the subparagraphs are points the PM/DPki could choose to bring
uo concerning the purpose of parts of the items being reviewed and relationships of parts
within an iterr, and between items. Fu.her explanations on the items (DOD 7935.1-S
oocuments) to be reviewed will be contained in a later edition of this volume of the
handbook.

a. System Requirements Review (SRRL The SRR, for purposes of this handbook,
begins with the PM/DPM identifying the DA-R, DPD, DPP, and FD as the items to be
reviewed. He/she also points out that DPRs will be addressed, when applicable, to the
part of the item being reviewed.

The DAR and all amendments to it should be briefly summarized by the PM/DPM.
He/she might state, "each of you have a copy of the original DAR. There has been I
amendment to it which added the requirement to do A. This additive requirement added
SB in cost, C man-hours and D additional days to E task. The benefit is estimated to be
SF per year. These changes did not exceed the 15%/120 day thresholds where a
management review is required. The certified Economic Analvsis (EA) is still valid and
represents the anticipated costs for this project. The last document to be reviewed will
be the FD and all requirements therein emenate from this DAR and I amendment."
After the discussions, if any, the DPD is reviewed.

The PM/DPM should briefly summarize the direction in the DPD and any amendment
which is pertinent to the review. This could include direction such as: what items must
be completed in the Conceptual Phase, who is responsible for producing a particular
item, what reviews must be held, what level of approval is required if thresholds are
breached, etc. After reviewing the releveni direction in the DPD, the DPP is reviewed,
In some cases the PM/DPM may wish to summarize the DPD) first.

The PM/DPM should discuss with review participants the major milestones shown in the
DPP. Following this brief review the near term tasks and their OPR/OCS(s) should be
reviewed. If there are schedule, cost, or resource changes expected they should be
addressed. The PM/DPM should also explain how changes to the Functional Baseline
affecting cost, schedule, or performance must be coordinated and approved. The
PM/DPM should also explain his/her plans to add other appendices to the DPP and the
procedures for making and coordinating changes to those already prepared. Sometimes
the review of the DPP, because of already planned changes, would be better served by
reviewing it last. If so, the agenda could be prepared showing the DPP will be reviewed
following Section 5 of the FD.

The next and most critical document to be reviewed is the FD. The FD should be
thoroughly reviewed section-by-section to make sure all attendees understand and agree
with the contents. The PM/DPM should point out that the acceptance of the FD as a
document which adequately defines the functional baseline is critical to the success of
the entire project. Without a defined and controlled baseline to work from, the
accomplishment of the ADS design, the preparation of the User Manual (UM) and the
preparation of the Test Plan (PT) become an impossible task. The PM/DPM should
recognize and emphasize the importance of certain paragraphs within sections of the FD.
As an example, the functional OPR/OCR(s) should make sure an adequate analysis of the
impact of the changes on the functional user organization has been done and the results
clearly documented in paragraph 2.6.1. Likewise, the ADP OPR/OCR(s) should carefully
analyze the timing requirements (paragraph 3.1.2) of each requirement (paragraph 3.1)
and make sure the proposed environment described in Section 4 is capable of meeting

,,

these requirements. If not, the known constraints or limitations should be identified in
paragraph 2.7. The PM/DPM should also recognize and point out that particular
attention must be paid to the contents of Section 3, since they are the basis for the
contents of follow-or) documents. As an example, the functions identified in paragraph
3.2 are further analyzed and detailed in the System/Subsystem Specification (SS).
paragraph 2.2. The functions in the SS are allocated to programs and then further
analyzed and detailed in the Program Specifications, paragraph 2.2. Paragraphs 4.1.1
and 4.1.2 of the PT are likewise dependent on specific and testable requirements and
functions being identified in paragraphs 3.! and 3.2 of the FD. The PM/DPM should use
visual aids such as charts, diagrams, etc., to assist in the review of the FD when feasible.

After completing the review of each section of the FD, and of each DPR associated to
each section, the review itself is considered complete. The PM/DPM now closes the
review meeting.

b. System Design Review (SDR). As with the SRR, the SDR begins with the
PM/DPM naming the first item for review. Experience has shown the PM/DPRA should
first attempt to familiarize all participants with the current Functional Baseline (FBL).
This can be carried out by the PM/DPM briefly going over the SRR minutes and then
identifying and reviewing any changes to the FBL since the SRR was concluded. This
would include new DARs/DPDs, DAR/DPD amendments, Class I Baseline Change
Requests (BCRs) against the FBL (FD), and changes in costs and benefits. This brief
review serves to give all participants a common understanding of the FOL.

Before beginning the review of the next item, the System Subsystem Specification (SS),
the PM/DPM should explain whether the OPR/OCR(s) requirements will be satisfied by
one or more Computer Program Configuration Items (CPCIs). As pointed out in
AFR 300-15, if there are multiple CPCIs each is required to successfully complete a
SDR. Basically what this means to the PM/DPM is: if the system to be designed will
consist of and be managed as a single entity (CPCI)--then a System Specification (SS)
will define the design and will be reviewed at a SDR. If the system will consist of
several manageable entitites or the development and/or implementation will be
phased--then the design of each CPCI will be defined in separate Subsystem Specifica-
tions each having a separate SDR. DOD 7935.1-S states, "If individual Subsystem
Specifications are prepared, they may at some point be bound together to form a System
Specification or a separate System Specification may be written." When multiple SSs are
being prepared, the PM/DPM must so advise the reviewers so they are aware of what
requirements in the FD will be satisfied by a CPCI and how each CPCI relates to the
others in the overall system. For the purpose of this handbook a single CPC1 will be
assumed.

After attempting to set up this common point of reference for the FBL, the SS should be
reviewed against it. That is, the 55 should be reviewed against the Functional Baseline
defined by the FD. The SS should be reviewed section by section and all DPRs against a
section addressed while that section is being reviewed. The PM/D3PM should ask the
development OPR to give an overview of the proposed automated data system (ADS).
This could be done from the charts required to satisfy paragraph 2.1 of the SS. The
PM/DPM should next point out to the participants that the System/Subsystems Functions
documented in paragraph 2.2 maintain a direct relationship to both the requirements and
functions in the FD, paragraphs 3.1 and 3.2 respectively. Again, this could be illustrated
by a chart showing the direct relationship of SS functions to iT) functions and
requirements (reference attachment 3). The PM/DPM must also, as required by AFLC
Supplement I to DOD[7935.1-S, name what functions have been allocated to what
programs (components) and where this allocation is documented. This relationshin rould

aJso be illustrated D% ma tr chart ('eference arta:nmen .). "Tr,. PKA!DPM snouid next
ask the oevelopment OPR tc explain the contents of Sectior 3 wunic defines the ADP
environment that will supDolo the OPR !OCR (s) requirements.

Following the review of Sections I throug,' 3 of the S5 and a&1 associated DPRs, the
PMIDPM snould name the next item for revieu. A similar revieu. section by section
with DPRs, should be carriec out against this item and all others, if feasible.
4!.fter reviewing the final item, the PMIDPM should present tne results o: an%

simulations of the proposed design in the SS or any other evidence not previous!y

presented. The PM/DPM should entertain any new DPRs, discussions or questions
concerning the SDR items. After discussions, if any, the PM/DPM should advise the
participants the review of the items is completed and close the SDR meeting.

c. Preliminarv Design Review (PDR). Before discussing the meeting, it is
important to explain several inconsistencies in AFR 300- 15 regarding PDRs. Fohowing
this discussion will be an explanation of the inconsistencies and of what AFLC/SC
recommends to eliminate these inconsistencies.

AFR 300-15, figure 1-2 identifies the SS and Subsystem Specifications (SSs) as being
separate items that are reviewed at the SDR and PDR respectively. However,
DOD 7935.1-S, paragraph 2.4.3 clearly points out that either a SS or SSs will be
prepared, not both. Further, AFR 300-15, figure 2-1, doesn't ide,'tify the SSs as being
separate and distinct items. It shows a SS or SSs being placed under change control after
a successful SDR. This position is consistent with the statement in AFR 300-15,
paragraph I-9a, but is contradicted by paragraph 3-7a(2). These are but a few of the
inconsistencies surrounding the PDR and SS/SSs in AFR 300-15. To eliminate debate and
meet the intent of DOD 7935.1-S and AFR 300-15, and also stay consistent with the way
ADSs evolve, SC takes the following position. If there are multiple CPCIs in a ADS.
each of their designs will be documented in separate Subsystem Spe-:ificatikns and be
subjected to SDRs and PDRs. Conversely, if there is only one CPCI, its design will be
documented in a System Specification and reviewed at a SDR and PDR. If the PM/DPM
wants the design of the ADS system, which is defined in Sections 2 and 3 of the SSfSSs
assessed and verified, this can be done at a SDR, without the finit, details for each
program being documented in Section 4. In large systems this could save considerable
rework in Section 4 if the design of the ADS is found to be faulty. This is not to say the
details in Section 4 are not available, they just are not available in finished form as
Section S requires. Once having successfully completed a SDR, and established an
Allocated Baseline (ABL), the agreed on controlled design (macro) of the ADS can now be
defined (documented) at the program level in Section S of the SS/SSs. This level of detail,
which logically follows 1he design of the ADS system or subsystem, can now be assessed
and verified at a PDR. Following the PDR, each program documented in Section 4 will
be designed at the lowest level and documented in a Program Specification. If the
PM/DPM decides the ADS design has little chance of being found faulty, he/she can
conduct a combined SDR/PDR at which time a complete (Sections I through 4)
System/Subsystem Specification is reviewed. In summary AFLC/SC believes the logical
evolution of a ADS system or subsystem is documented first in either an SS or in SSs not
both. The ADS level design is documented in Sections 2 and 3, which is reviewed at the
SDR, followed by the documentation of the program level (macro) design in Section 4,
which is reviewed at the PDR.

Following the opening of the revie%, the PM/DPM reviews the ',DR minutes and
summarizes previous changes/additions to the FBL and Allocated Baseline (ABL). After
any discussions, the review of Section 14 of the SS is begun. Section 4 should be reviewed

233
~ti

Jr, t i ,, i .d' iNii the 1I| dnd VIL Thdt is, the pdrt i(iptr i s,,jlf ds(-ss arid ve-ify

whetne: the m.itt ro ieve, cdesIgnl of eu-l prograrn will eriable the fliicltOnS cdrried out by

it to trivet tht OPR !',VCRs requirenients. F.irther, each proprin. muSt be designed

according to applicable standards and be able to accomplish the functions allocated
withir, the tec-hnical limitations of the environment defined in %ection 3. 3ust as the

name infers. it is a preliminary design review of each component (pr)ram) in the Ar)S
system or subsvstemn.

The last item to revieA is a draft of the Test and Implementation Plan (PT). Draft in

this context neans a PT in reviewable form, excluding the results of dvelopment testing
required in Section 2. The draft PT is reviewed at this time to assess ind verify the ADS
and programs as designed are capable of being tested to demonstrate the OPR/OCR(s)
requirements have been met. If not, either the ADS design, program design or the tests
must be redesigned. The PM/DPM should explain the purpose of the PT, as explained in
Section I and also explain that the tests specified must relate to the requirements and
functions identified in the FD.

After completing the review of the SS, PT, and any associated DPRs, the PM/DPM
should close the meeting.

d. Critical Design Review (CDR). The PM/DPM begins the review by identifying
the first item to be reviewed. As with each review, the PM/DPM should attempt to
bring all participants up-to-date as to the FBL and ABL. As explained previously, this is
done by briefly discussing the PDR minutes and all approved changes made to the system
since the last review. The PM/DPM will find the configuration management (CM) status
accounting records can be useful in accomplishing this update.

Following the update, the PM/DPM names the Program Specification (PS) that will be

reviewed. The PM/DPM may decide, in the case of large systems and/or when no DPRs
have been received against a PS, that all PSs will not be reviewed at tie meeting. If the
PM/DPM decides all PSs will not be reviewed, he/she should explain why certain ones
will and others will not. The PSs to be reviewed should be reviewed against the SS(s),
wh.ch names the functions to be carried out by each program and i-s inputs, outputs,
data bases, interfaces (internal/external). As explained by DOD 7935.1 -S, pages 3-33,
through 3-40, the definition of each program must relate to specific parts of the SS(s)
and/or FD. Each PS reviewed must be assessed and verified as to its ability to meet the
OPR/OCR(s) requirement, to its conformance to standards, and to its technical correct-
ness. When the PSs are approved, they will be the basis for each programmer to code
from. This, is not to say that in certain cases where risk is low or techniques, algorithms,
etc., require verification, that coding has not already begun or com)leted for selected
programs. If this has been done the PM/DPM should so advise and us. the results to aid

* :in the review.

S~When the review of the proposed technical design of all or critical programs has been
completed, the system support documents should be reviewed. These include drafts of
the Users Manual (UM), Operations Manual (OM', and although considered by AFR 300-12
to he an internal document, the Maintenance Manual (MM), and a completed rest Plan

r" (PT). These documents should be reviewed in coltext with the FD, S(s), and PS(s). They
mu,.t be reviewed to decide if they are correct and consistent given the ADS design
solution specified in the SS, PS(s), and RD and DS i prepared. The ultimate obiec-tive of
course is to make sure the ADS to be coded can be used by the functional user, operated
by operation'. personnel, tested by an independent test team, and maintained by the ADP
manteniane staff. If design deficiencies are note(during this review, the s-v'ter/pro-

gram design must he corrected and baseline documenits changed accordingly.

123 4

A-.ter completing the reviev o 4{l iters tnt PM IDDM stint ciose the meetn

Product 'Verlica:ior. Review (P\'R). The PMIDPM snoulc open the PVR witn w

briea sumrr,a-% of trhe resu:Ts c: the preliminar% Physical and Functiona! Configuration
Auoits aind the result ! oeveboprrent testing. This should be followed witt a discijssior,

o! tr e cnanges to tre FbL and IBL triat have taker place since the CDR.

Following these discussions. 'he audit report i! reviewed anc the items previoust)
reviewec at the CDFR are reviewed if their final form. The PM/DPM snouid explair to
all participants, that once approved the support documents wil! be used bN all people,
tunctioral and ; DP. during the Test Phase. Therefore. each and every document should
be reviewed as it it were read) for lull operational use. The PM/DPM should also point
out that subsequent to tneir review and approval, the PS(s) which define the Product
Baseline will be placed under configuration control (Class 1/11 BCR).

After completing the revieu and addressing all DPRs tre meeting is cJosed.

f. System Validation Review (VR). This review, which is conducted at the end of
the Test Phase, is conducted to assess and verify the systems acceptability for
operational use. To accomplish this and terminate the development project, the
PM/DPM must get the functional OPR/OCR(s) to certify the system that has been
developed. To accomplish this, the PM/DPM should review the Test Analysis Report
(RT) prepared by the independent test director. This report should be reviewed to decide
if the tests conducted provide evidence that the functional OPR/OCR(s) requirements
specified in the FD have been satisfied. Additionally, the results from the final FCA and
PCA should be reviewed to decide il a quality product has been developed that meets all
functional requirements and technical standards. Following these reviews, the PM/DPM
should name and review the planned disposition of all outstanding DPR(s), System
Problem Reports (SPRs) (prepared during validation testing), and BCRs. '. Followmg their
review, the PM/DPM should identify to the representative of the ADP maintenance
organization all of the items that will be turned over and the planned turnover date(s).

After the above has been accomplished the meeting should be closed.

g. Final Operational Evaluation (FOE). This evaluation (review), which is some-
times needed, is an Operational Phase review and is not discussed in AFR 300-15. The
description of this review is described in AFR 300-12, paragraph 4-5(6). As AFR 300-12
explains, the FOE "is a review of the operational data system". For a multi-site system,
this review will take place when the system is operational at a representative set of
planned sites. The installation at the remaining sites then would be considered to be the
implementation of an already operational system."

Siftce there is nothing more definitive concerning this review or the organization
responsible for its accomplishment, it will not be discussed further in this handbook. The
PM/DPM, if tasked by the DPD to do a FOE, should ask for specific instructions
concerning its purpose, items to be reviewed, reports to be prepared, etc.

Closing a Meeting. In closing a review meeting, the PM/DPM should try to wrap up all
loose ends. This gives participants an understanding of what actions are still required to
successfully conclude a review, when they will be carried out, and who is responsible for
their accomplishment. For example, the PM/DPM should announce when merting
minutes will be sent and name all DPRs that need further work to resolve. For each
DPR he/she should name the responsible person/organization and the expected comple-
tion date. He/she should also name the actions still needed to set up a baseline and when

they will be completed, e.g., complete DPRs, update FD, forward FD to key partic:ipants
with AFLC 406 for signature, conduct CCB meeting. Following these discussions, the
PM/DPM should reiterate the major tasks between this review and the next review.
Accomplishing this, the PM/DPM should then thank all participants for assisting h m/her
and dismiss the participants. After the meeting, the PM/DPM must now complete those
actions necessary to successfully end the review.

Concludinf Reviews. After a review meeting, the PM/DPM must take certain actions to
successfully end a review and if necessary establish a baseline. These actions, which are
specified in AFR 300-15 and AFLC Supplement 1, are discussed in the following
paragraph.

The first concern of the PM/DPM, after a meeting, is to make sure all responsibilities
are assigned and understood. Work should already be in progress toward resolving open
DPRs, and the meeting minutes should be nearing completion, if secretarial help was
available during the meeting. The PM/DPM should have a letter of transmittal ready to
transmit the updated DOD 7935.1-S documents, AFLC 406, and minutes to meeting
participants (Reference Atch 5). A CCB meeting (to recommend acceptance of a
document for baselining) should be scheduled and prepared for as well as a
AFLCR 400-18 Program Manager Review (PMR). The PM/DPM should also make sure
the required CM logs are up-to-date and procedures have been set up to maintain the
integrity of a baseline.

While all of the actions to conclude a review seem trivial, it must be remembered there
are also a thousand and one other things taking place concurrently, relative to the
project. So the PM/DPM should recognize and be ready to quickly conclude a review and
have a defined controllable baseline to work from. This is not to say, rush to completion.
Rather, it is saying be aware of all of the activities needed to end a successful meeting
and make sure they are planned for and are carried out in an orderly and quick manner.

3(

AUDITS

Puroose of Audits. Audits of a CPCI are conducted at two points in its develovmen- to
determine whether the CPCI conforms to specifications and standards. On completion of
an audit, the PM/DPM will receive an audit report citing the findings and recommenda-
tions ol the audit team. A more detailed explanation of the purpose of each type audit
follows:

a. Functional Configuration Audi-: (FCA). This audit is conducted to validate
whether a CPCI's actual performance complies with the SS and meets the OPR/OCR(s)
requirements specified in the PD.

b. Physical Confituration Audit (PCA). This audit is conducted to validate
whether a CPCI agrees with its technical documentation, conforms to quality assurance
policies and procedures, and adheres to applicable standards.

Preparing for Audits. The PM/DPM must get ready for, as noted previously, audits at
two points in the development cycle of each CPCI. The first audit, which is entitled,
"Preliminary Functional and Phys;cal Configuration Audit,' is conducted lead-time away
from the scheduled PVR for a CPCI. The second audit is entitled, "Final Functional and
Physical Configuration Audit," and is conducted lead-time away from the scheduled SVR
for a CPCI.

To prepare for an audit, the PM/DPM must first notify the audit director, named in the
DPD, of the particulars concerning the CPCI to be audited. This notification is then
followed with the delivery of the items to be audited (reference APR 300- 15, Chapter 3,
Section C for contents of notification anc identification of the items to be audited).

Conducting Audits. Conducting audits are not the responsibility of the PM/DPM.
H ver, the PM/DPM is very much interested in their results because they are a key
element in determining whether the CPCI is ready for validation testing and later for
operational use. The section of AFR 300-15 referenced in the preceding paragraph
shows what will be done during a FCA and PCA. This section of AFR 300-l5 also points
out the difference between a preliminary and final configuration audit.

Concludini Audits. Both audits are concluded when the audit director prepares minutes
(rieort) of the audit, citing the findings and recommendations of the audit team. These
reports are given to the PMIDPM for use in the PVR and SVR. The PM/DPM should
review these reports very carefully before actually conducting a PVR or SVR. If the
findings indicate major system discrepancies exist, the PM/DPM must then determine if
the PVR and SVR should be delayed. If rajor discrepancies do exist and the PMIDPM
decides the PVR/SVR will be conducted I ior to their correction, he/she should be ready

<: to discuss their impact on validation testing/operation at the PVR/SVR/PMR.

9A

DOCUMENTS NECESSARY TO BEGIN THE CONCEPTUAL PHASE

A. Required System Capability (RSC)

1. Prepared in accordance with (lAW) AFLCR 400-3.

2. Prepared by organization having the requirement (OPR).

3. Validated by AFLC/XRB, lAW AFLCR 400-3, attachment 2.

4. Prioritized by AFLC/XRB, lAW AFLCR 400- , attachment 3.

5. Approved by AFLC/XRB or AF/LE.

6. Entered in AFLC Capabilities Plan (process, priority, etc.) by AFLC/XRB.

7. Entered in AFLC LMS Action PLan (objective, schedule, resources, etc.) by
AFLC/SCC.

B. PRO3ECTED ADP REQUIREMENT (PAR)

i. Prepared lAW AFLC/ACOR Data Call Letter.

2. Prepared by organization having the requirement.

3. Presented to AFLC Management System Panel (MSP) by organization
having equipment.

4. Approved and prioritized by MSP.

3. Entered into AFLC Major Command ADP Plan (MCAP) by AFLC/ACD.

6. If manpower is required, a 602 package is needed at the same time.

C. MANPOWER CHANGE REQUEST (MCR)

1. AF Form 602, prepared by Servicing Manpower Evaluation Team (MET) in
cooperation with organization having requirement, lAW AFM 26- 1, Chapter

2. Authenticated by HQ AFLC/DPQ and sent to HQ USAF/PRM.

D. PRELIMINARY EVALUATION NOTICE (PEN)

1. Prepared by the organization having requirement lAW AFLC Supplement I
to AFR 300-12.

2. Sent to AFLC/ACD for evaluation.

3. Evaluated by potential data automation development organization.

4. Returned to originating organization (via ACD) for use in preparing DAR.

238

I

E. DATA AUTOMATION REQUIREMENT (DAR)

I. Prepared lAW AFR 300-12, attachment I and AFLC Supplement 1.

2. Prepared by organization having the requirement.

3. Validated by AFLC/XRB IAW AFLCR 400-5, attachment 2.

4. Prioritized by AFLC/XRB [AW AFLCR 400- , attachment 3.

3. Scheduled by AFLC/ACD.

6. Approved by AFLC/AC or AF/AC & LE or SAF/FM.

7. The following sequence should be followed FS, EA, DAR.

F. ECONOMIC ANALYSIS (EA)

1. Prepared IAW AFR 300-12, Chapter 3, Section 5 and AFLC Supplement 1,
AFR 178-1 and AFLC Supplement 1.

2. Prepared by organization having the requirement (EA needed when
estimated development man-years are five or more).

3. Certified by AFLC/ACM or AF/ACM.

4. Included (when needed) as attachment to DAR, IAW AFR 300-12,
attachment 1 and attachments 8 thru 11.

3. Actuul costs tracked (when needed) IAW AFR 300-12, Chapter 3, Section
C, attachments L2 thru 14.

6. Administrative Personnel assigned to a project office must be costed to the
project.

G. FEASIBILITY STUDY (FS)

1. Prepared IAW AFLC Supplement 1, attachment 3, to AFR 300-12.

2. Prepared by organization having the requirement (FS needed When
estimated man-years are 10 or more).

S3. Included (when needed as atachment to DAR, JAW AFR 300-12.
attachment 1.

H. PRIVACY ACT STATEMENT

1. Prepared IAW AFR 300-12; Chapter 2, paragraph 2- 10.

2. Prepared by organization having 'te requirement.

3. Included in OAR [AW AFLC Supplement 1, attachment 6 to AFR 300-i .

-S"..

ADP AND TELECOMMUNICATIONS REQUIREMENTS CHECKLIST

1. Prepared lAW AFR 300-12, Chapter 5, 6, or 9.

2. Prepared by organization having the requirement (Checklist prepared when
a Delegation of Procurement Authority (DPA) is needed).

3. Certified by AFLC/AC, AF/ACD, or SAF/FM.

4. Included (when needed) as attachment to DAR, IAW AFR 300-12,
attachment I and 23.

5. All documentation supporting the checklist must be kept on file.

J. SITE PREPARATION REQUIREMENTS

1. Prepared IAW AFR 300-12, Chapter 2, paragraph 2-11 and AFLC Sup-
plement 1.

2. Prepared by organization having the requirement.

3. Included in DAR, lAW AFLC Supplement 1, attachment 6 to AFR 300-12.

K. AF/ATC TRAINING REQUIREMENTS STATEMENT

1. Prepared lAW AFR 300-12, Chapter 2, pa,'agraph 2-8.

2. Prepared by organization having the requirement.

3. Notification of training requirement (if applicable) to Air Training
Command (ATC).

4. Included in DAR, lAW AFLC Supplement 1, attachment 6, to AFR 300- 12.

L. TELECOMMUNICATIONS REQUIREMENTS STATEMENT

1. Prepared lAW AFR 300-12, Chapter 2, paragraph 2-9.

' 2. Prepared by organization having the requirement.

3. Requirement coordinated through HQ AFLC/DC with Air Force Com-
munications Command (AFCC).

4. Included in DAR, IAW AFLC Supplement 1, attachment 6, to AFR 300- 12.

M. NEW START/STOP REQUEST

I. Prepared lAW AFM 26-I, Chapter I and AFLC Supplement 1.

2. Prepared by organization having the requirement.

3. Sent to AF/MPMX (with copy to DAR) by AFLC/DP.

240

N. ENVIRONMENTAL ASSESSMENT (FORMAL/INFORMAL)/STATEMENT

1. Prepared lAW AFR 19-2 and AFLC Supplement 1.

2. Prepared by organization having the requirement.

3. Certified by proponent of requirement.

4. Accompanies DAR through decision making process to HQ USAF.

0. STATEMENT OF WORK (SOW)

1. Prepared lAW APR 300-12, Chapter 6, paragraph 6-2, and attachment 28.

2. Prepared by organization requiring contractor support.

3. Sent with DAR and approved by HQ AFLC/ACD or DAR approval
authority.

4. Sent to servicing contracting office or GSA (with GSA Form 2063) by HQ
AFLC/ACD.

.24

i t 241

It. DOCUMENTS/ACTIONS NECESSARY TO COMPLETE THE CONCEPTUAL PHASE

A. DATA PRO3ECT DIRECTIVE (DPD)

I. OPO received from DAR approval authority (supplemented by ADP Single
Manager as appropriate).

2. Prepared [AW AFR 300-12, Chapter 2, paragraph 2-6, attachment 2, and

AFLC Supplement I.

3. Directed actions to be taken by project participants.

B. DATA PROJECT PLAN (DPP)

1. Prepared lAW AFR 300-12, attachment 3 and AFLC Supplement 1.

2. OPR - P-oject Management Office (PMO).

3. OCR(s) - Organizations participating in supporting project.

4. Approved by DAR approval authority.

5. Describes actions to achieve project performance, schedule, and cost;
objectives specified in DPD.

C. FUNCTIONAL DESCRIPTION (FD)

1. Prepared (when needed) lAW AFR 300-12, attachment 26.

2. OPR - Project Management Office.

3. OCR(s) - Organizatcr-s participating in/supporting project.

4. Baselined by project manager subsequent to System Requirements Review
(SRR).

5. Defines system requirements (after system analysis) to be satisfied.

6. DODS 7935.1-S should be read prior to starting preparation of the FD.

D. SYSTEM REQUIREMENTS REVIEW (SRR)

1. Conducted lAW AFR 300-13, Chapter 3 and AFLC Supplement 1.

2. Chaired by project manager of his/her designee.

3. Attended by representatives of participating/support (project) organ-
izations.

4. Conducted to review/finalize contents of FD and make sure all project
participants/supporters have mutual understanding of the ADS require-
ments. In addition the DAR, DPD, and DPP must also be reviewed.

'II2I

E. CONFIGURATION CONTROL BOARD (CCB) MEETING

1. Conducted JAW AFR 300-15, Chapter 2 and AFLC Supplement I.

2. Chaired by project manager or his/her designee.

3. Attended by members specified in DPD or DPP.

4. Conducted to approved Configuration Control Directive (CCD) (AFLC
Form 406) requesting initial baselining or to review/classify requested
changes to established baselines.

F. PROGRAM MANAGER REVIEW (PMR)

1. Conducted IAW AFLCR 400-IS.

2. Chaired by AFLC/SC (LMS program manager).

3. Project presentations given by project manager (or his/her designee).

I. Attended by project manager, deputy project manager and representatives
from participating/supporting organizations.

3. Conducted after completion of a major milestone (or a least every 6
months) to assess project progress and give direction
(continue/change/terminate) per AFLC Form 1298.

G. ADPE/PERFORMANCE SPECIFICAT7ON

1. Prepared IAW AFR 300-12, Chapter 9.

2. OPR - Project Management Office.

3. OCR - Organizations participating in/supporting project.

4. Approved by approval authority shown in AFR 300-2, attachment 2
(contact HQ AFLC/ACD for verification).

3. Delegation of Procurement Authority requested frcm GSA (if needed) by
approval authority.

6. If approval authority is HQ USAF/AC), RFP prepared by AFCAC
(reference AFR 300-12, Chapter 9 and attachment IS).

7. If approval authority is HQ USAF/ACD, RFP prepared by servicingcontracting office (reference AFR 300- 12, Chapter 9 and attachment 1).

H. STATEMENT OF WORK ISOW) - See entry 1.0.

I. DATA NUTOMATION REQLIREMENT/AMENDMENT

1. Prepared, when needed, based on ':riteria in AFR 300-12. Chapter 2.
paragraph 2- 5b.

2. See entry I.E. for remaining actions/responsibilities.

2/

III. ACTIONS NECESSARY TO BEGIN THE DEFINITION PHASE

A. DATA PROJECT DIR ECT! VE/UPDATZ AMENDMENT

1. Prepared, when needed, based on criteria in AFR 300-12, Chapter 2,
paragraph 2-6.

2. See entry IL.A for remaining actions/responsibili ties.

B. DATA AUTOMATION REQUIREMENT/AMENDMENT

1. Prepare baseline change request forms as needed.

2. See entry IL.E and 11.1 for remaining actions/responsibilites.

* C. STATEMENT OF WORK - SEE ENTRY 1.0.

244

=WMA*

IV. ACTIONS NECESSARY TO COMPLETE THE DEFINITION PHASE

A. DATA PRO3ECT PLAN UPDATE

1. PMO updates those parts of the DPP that need updating as a result of
changes in project scope (DAR/DPD amendments, etc.), schedule,
resources, benefits, etc.

2. See entry 1.8 and AFLCR 400-18 for remaining actions/responsibilities.

B. FUNCTIONAL DESCRIPTION CHANGES

1. PMO changes the FD as a result of Baseline Change Requests, which are
prompted by DAR(S)/DAR amendments, SPR(s), etc. Update Configuration
Management Status Accounting Lop as appropriate.

2. See entry I.C and U.E for remaining actions/responsibilities.

C. SYSTEM/SUBSYSTEM SPECIFICATION (SS)

1. Prepared (when needed) lAW DOD Standard 7935. 1-S.

2. OPR - Project Management Office.

3. OCR - Orpnizations participating in/support project (ADS design ac-
complished by ADP personnel).

4. Baselined after the System Design Review (SDR).

3. Defines the ADS design (system/subsystem/programs) further defines the
ADS functions, and identifies (allocates) the functions from the FD to each
program.

D. DATA REQUIREMENTS DOCUMENT (RD)

I. Prepared lAW DOD Standard 7935.1-S.

2. OPR - Project Management Office.

3. OCR - Organizations participating in/supporting project.

4. Baselined after the System Design Review.

A. Defines and lists data elements and defines users data collection requre-
ments.

E. SYSTEM DESIGN REVIEW (SDR)

I. Conducted IAW APR 300-15, Chapter 3 and AFLC Supplement i.

2. Chaired by project manager of his/her designee.

3. Attended by representatives of part icipating/support ing organizations.

;vir)

K . _:..........

4. Conducted to review/finalize contents of SS(s) and RD (when applicable)
and make sure proposed ADS design will satisfy user's needs as specified
within the FD.

F. CONFIGURATION CONTROL BOARD - See entry !l.E.

G. PROGRAM MANAGER REVIEW - See entry lI.F.

"46

V. ACTIONS NECESSARY TO BEGIN THE DEVELOPMENT PHASE

A. DATA PRO3ECT DIRECTIVE/UPDATE/AMENDMENT - See entry I.A.

B. DATA AUTOMATION REQUIREMENT/AMENDMENT - See entry I11.8.

C. STATEMENT OF WORK - See entry 1.0.

4 7

Vt. ACTIONS NECESSARY TO COMPLETE THE DEVELOPMENT PHASE

A. DATA PROJECT PLAN UPDATE - See entry IV.A.

B. FUNCTIONAL DESCRIPTION CHANGE - See entry IV.B.

C. SYSTEM/SUBSYSTEM SPECIFICATION/CHANGE

1. PMO changes the SS as a result of Baseline Change Requests, which are
prompted by DAR(S)/DAR amendments, FD baseline changes, etc.

2. See entry IV.C. and 1I.E. for remaining actions/responsibilities.

0. DATA REQUIREMENTS DOCUMENT CHANGE

1. PMO changes the RD as required.

2. See entry IV.D. and II.E. for remaining actions/responsibilities.

E. DATA BASE SPECIFICATION (DS)

I. Prepared lAW DOD Standard 7935.l-S.

2. OPR - Project Management Office.

3. OCR - Organizations participating in/supporting project (Data base design
done by ADP personnel).

4. Baselined after the Product Verification Review.

3. Describes the Storage alloction and data base (tape, disk, etc.)
organization.

F. PROGRAM SPECIFICATION(S) (PS)

1. Prepared (when needed) lAW DOD Standard 7935.1-S.

2. OPR - Program Management Office.

3. OCR - Organizations participating in/supporting project (program design
done by ADP personnel).

4. Baselined after the Produce Verification Review.

5. Defines the design of each program in the ADS/SS and identifies the

. function(s) performed by the program(s).

G. TEST PLAN (PT)

i. Prepared (when needed) lAW DOD Standard 7935.1-S and AFLC Supplement
I.

2. OPR - Protect Management Office.

3. OCR - Organizations participating in/supporting project (reference AFR
300-15, Chapter 5 and AFLC Supplement I for more specifics).

4. Baselined after the Product Verification Review.

3. Defines the test program (plan) to be conducted by an independent test
group.

H. MAINTENANCE MANUAL (MM)

I. Prepared lAW DOD Standard 7933.1-S, AFLC Supplement I and APR
300-13, AFLC Supplement 1.

2. OPR - Project Management Office.

3. OCR - Organizations pikrticipating in/supporting project.

4. Baselined after the Product Verification Review.

3. Describes computer programs in a detailed technical presentation to assist
maintenance programmer(s).

1. USER'S MANUAL (UM)

1. Prepared 1AW DOD Standard 7933.1-S and AFLC Supplement I.

2. OPR - Project Management Office.

3. OCR - Organizations participating in/supporting project (prepared by the
ADS "user" organization(s).

4. Published/managed IAW AFR 5-4 and AFR -1.

5. Provides the "user" organization(s) management and staff with information
and instructions for managing and using the ADS.

3. COMPUTER OPERATION MANUAL (OM)

I. Prepared IAW DOD Standard 7935.1-S and AFLC Supplement 1.

2. OPR - Project Management Office.

3. OCR - Organizations participating in/supporting project.

4. Baselined alter to the Product Verification Review.

3. Gives the information needed by computer operations personnel to operate
the ADS.

K. PRELIMINARY DESIGN REVIEW (POR)

1. Conducted lAW AFR 300-10, Chapter 3 and AFLC Supplement 1.

2. Chaired by project manager or his/her designee.

-4QIrlcmaae

3. Attended by representatives of part icipating/suppor ting organizations.

4. Conducted to review completed SS(s), which specifies the design of each
Computer Program Configuration Item (CPCI). Also to review a draft of
the test plans contained in the Test Plan (TP).

L. CRITICAL DESIGN REVIEW (CDR)

1. Conducted lAW AFR 300- 15, Chapter 3 and AFLC Supplement 1.

2. Chaired by project manager or his/her designee.

3. Attended by representatives of participating/supporting (project)
organizations.

4. Conducted to review the design of each program within the CPCI, usually
prior to coding. Other supporting documents are also reviewed (reference
AFR 300-15 and AFLC Supplement 1) to make sure the proposed design
solution will meet all requirements.

M. PRELIMINARY FUNCTIONAL/PHYSICAL CONFIGURATION AUDIT

1. Conducted lAW AJFR 300- 15, Chapter 3 and AFLC Supplement 1.

2. Conducted prior to the Product Verification Review.

3. Conducted by individual(s)/organization(s) listed in the I)PD (reference
AFLC Supplement 1, paragraph 3- 11 to AFR 300- 15.)

4. Items to be reviewed made available to auditors by project manager.

5. Results/recommendations given to project manager by auditors.

6. Conducted to make sure the CPCI meets functional requirements and the
physical components are correct, complete, and consistent (listings vs logic
charts vs narrative definitions, etc.).

N. PRODUCT VERIFICATION REVIEW (PVR)

1. Conducted IA* AFR 300-15, AFLC Supplement I.

2. Chaired by project manager or his/her designee.

3. Attended by representatives of participating/supporting organizations.

4. Conducted to review all products comprising the CPCI and to make sure all
necessary preparations have been made to begin formal environmental
testing.

0. CONFIGURATION CONTROL BOARD (CCB) MEETING - See entry II.E.

P. PROGRAM MANAGER REVIEW - See entry II.F.

"')O

VII. ACTIONS NECESSARY TO BEGIN THE TEST PHASE

A. DATA PROJECT DIRECTIVE/UPDATE/AMENDMENT - See entry III.A.

B. DATA AUTOMATION REQUIREMENT/AMENDMENT - See entry 111.8.

C. STATEMENT OF WORK - See entry 1.0.

A

Vlll. ACTIONS NECESSARY TO COMPLETE THE TEST PHASE

A. DATA PROJECT PLAN UPDATE - See entry IV.A.

B. FUNCTIONAL DESCRIPTION CHANGE - See entry IV.B.

C. SYSTEM/SUBSYSTEM SPECIFICATION CHANGE - See entry IV.C.

D. DATA REQUIREMENT DOCUMENT CHANGE - See entry VI.D.

E. DATA BASE SPECIFICATION (DS) CHANGE

I. PMO changes the DS as a result of Baseline Change Requests, which are
prompted by DAR(S)/DAR amendments, hardware configuration changes,
etc. 2. See entry VI.E. and lI.E. for remaining actions/responsibilites.

F. PROGRAM SPECIFICATION (PS) CHANGE

1. PMO changes the PS(s) as a result of Baseline Change Requests, which are
prompted by DAR(S)/DAR amendments, changes in functions performed,
changes in logic, etc.

2. See entry VI.F. and II.E. for remaining actions/responsibilites.

G. TEST PLAN (PT) CHANGE

I. PMO changes the PT as a result of Baseline Change Requests, which are
prompted by DAR(S)/DAR amendments, changes in test plans, conditions,
etc.

2. See entry VI.G. and IJ.E. for remaining actions/responsibilities.

H. MAINTENANCE MANUAL (MM) CHANGE

1. PMO changes the MM as a result of Baseline Change Requests, which are
prompted by DAR(S)/DAR amendments, program changes,
hardware/software (basic) changes, etc.

2. See entry VI.H. and II.E., for remaining actions/responsibilites.

I. USER'S MANUAL (UM) CHANGES

1. PMO changes the UM JAW AFR 5-1 (the contents of the UM must remain
consistent with the other CPCI documentation).

2. See entry VI.I. and [I.E. for remaining actions/responsibilites.

3. COMPUTER OPERATION MANIJAL 6)M) CHANGE

I. PMO changes the OM as a result of Baseline Change Requests, whic'h are
prompted by flAR(S)/DAR amendments, procedural changes, program
changes, etc.

2. See entry VI.J. an" II.E. for remaining actions/responsibilites.

•

K. TEST ANALYSIS REPORT (RT)

I. Prepared lAW DOD Standard 7935.1-S, AFLC Supplement t and AFR
300- 15, AFLC Supplement 1.

2. OPR - Project Management Office.

3. OCR - Organizations participating in formal (environmental) testing.

4. Given to audit team prior to final functional/physical configuration audit.

3. Prepared to document the results of testing the ADS functions which are

needed to satisfy the "user's" requirements. Also to document known

deficiencies and areas of improvement.

L. FINAL FUNCTIONAL/PHYSICAL CONFIGURATION AUDIT (FCA/PCA) - See

entry VIM. for necessary actions/responsibUities.

M. SYSTEM VALIDATION REVIEW (SVR)

I. Conducted IAW AFR 300- 1, Chapter 3 and AFLC Supplement I.

2. Chaired by project manager or his/her designee.

3. Attended by representatives of participating/supporting organizations and
"user" representative authorized and responsible for accepting/rejecting
developed ADS.

4. Conducted after completion of formal environmental testing for purpose of

users certifying that ADS satifies requirement(s) and is ready for use.

N. CONFIGURATION CONTROL BOARD (CCB) - See entry [I.E.

0. PROGRAM MANAGER REVIEW (PMR) - See entry II.F.

- '

IX. OPERATIONAL PHASE ACTIONS

A. DATA PRO3ECT DIRECTIVE/UPDATE/AMENDMENT - See entry III.A.

B. LETTER OF TRANSMITTAL (TL)

1. Prepared lAW AFR 300-15, Chapter 3 and AFLC Supplement i (draft
reviewed at preliminary FCA/PCA).

2. OPR - Project Management Office.

3. OCR - Organizations participating in/supporting project.

4. Prepared to send material and instructions needed for ADS
testing/implementation.

C. FINAL OPERATIONAL (EVALUATION) REVIEW (FCR)

1. Conducted lAW AFR 300-12, Chapter 4.

2. Chaired by project manager or his/her designee.

3. Attended by representatives of participating/supporting organizations and
user representative(s).

4. Conducted after ADS implementation to make sure ADS works
satisfactorily after operating for a period of time in an operational
environment.

D. PROGRAM MANAGER REVIEW (PMR) - See entry 1I.F.

1. CONFIGURATION MANAGEMENT (CM)

A. INTRODUCTION

CM is the implementation and maintenance methodology of identification,
control, mind status accounting, ensuring effective control of the
definition/configuration of a desired product throughout the life of the system.
The purpose of configuration management is to ensure maintainability of the
system throughout its life cycle.

The individual(s) accompli:hing the CM functions is responsible for:

Identification and documentation of the functional and physical charac-
teristics of an item.

Controlling changes to those characteristics.

Recording and reporting status of proposed changes.

CM basically deals with the documentation specifying or reporting the status of
a configuration item (Cl).

The Configuration Management Plan (CMP) is an appendix of the DPP and will
be prepared by the project manager. (AFR 300-15, AFLC Sup 1, para 2.2).

The CMP describes responsibilities and procedures for implementing CM within
the project and should be completed prior to the SRR. (See AFR 300-1, attch.
4 for format).

The scope of these procedures and number of personnel assigned CM respon-
sibilities should be tailored to the quantity, size, scope, stage of life cycle,
nature and complexity of the CI involved, and whether it is government or
contractor developed at government expense or privately developed and offered
for government use.

A baseline is a specification, under change control, defining a configuration

item (Cl) at a point in time. These baselines must be maintained for the life of
the system.

The functional baseline is defined by the functional description. This is the
agreed to definition of the system requirements: performance, operational,
logistical, training, etc.

The system/subsystem specifications define the allocated baseline. These are

performance-level specifications which define what functions are to be per-
formed by what program(s) or piece of equipment.

The program specifications define the product baseline. These specifications
define the components (programs) of the operational system

A computer program is a sequence of coded instructions performing a function
or set of functions. It may be a CPCI (below) or part of a CPCI. If a program
is developed to assist the development effort, but will not become a componert

of the operational system, it is not considered to be a CPCI or a part of a CPC

A computer program configuration item (CPCI) is the actual ccded instruc-
tions recorded on a storage medium. It may in fact be a module, program, or a
system comprised of programs.

Computer program component (CPC) is a component part of a CPCI. It may be
a module or a program.

B. CONFIGURATION IDENTIFICATION

Configuration Identification is the documentation describing the physical and
functional characteristics of an item. In the case of DOD computer based
systems this documentation is done IAVV DODS 7935.1-S. The definition of
these characteristics are evolved during the acquisition process and the
identification is established upon approval by the customer during the on-going
review process.
Designation of a CPCI is done on the basis of the engineering design taking into

consideration:

Project Management Philosophy

Technical Risk

Complexity

Separate Computers

Separate Schedules

r)ifferent Functions

A CPCI is a level of management, it is the level:

At which the project manager accepts the product - i.e., program, module,
or ADS.

Below which the development manager accepts all responsibility.

Above which the project manager is responsible for interface, integration,
and performance.

Each CPCI requires:

Index

+ System/Subsystem Specification

BCR(s) and Associated Status Reports and Files

Separate Reviews and Audits

User and Operating Manuals

Formal Development and Operational TestinR

Formal Acceptance

A Software Documentation Plan (reference AFR 300-I5, Chapter 2, para. 2-7
and AFLC Supplement 1.) establishes the documentation to be produced and its
management. This includes technical and management documentation, reports
and official letters, and standard forms. The following should be covered:

Title and Identification Number

Purpose

Who is Responsible

Cordination and Approval Authorities

Schedule

Publication and Distribution

Documentation standards are covered in IjODS 7935.1 -S and the AFLC supple-
ment.

C. CONFIGURATION CONTROL

Configuration Control is the practice of maintaining strict change control over
requirements, design, code, and test activities. It is the means of ensuring
coordination between Project Management, Development Activity Personnel
(DAP), and Functional Area Personnel (FAP).

The Configuration Control Board (CCB) is the management activity, chaired by
the project manager, which makes all significant decisions relating to baselined
documents and baseline change requests.

The Baseline Change Request (BCR) is the recommendation of an alteration to
the configuration/definition subsequent to the establishment of the baseline.
The proposal includes the statement of the requirement for the proposed
alteration as well as the impact on cost, schedule, and performance.

Change Classifications include three types:

A Class I change modifies an established baseline and/or impacts approved
cost, schedule or performance. Class I changes must be approved by the
CCB prior to implementation.

A Class 1 change is a documentation change (correction). It does not
impact approved cost, schedule, or performance and does not require prior
approval by the CCB, only the Project Manager.

Internal changes are those made to a CPCI or docuiment(s) prior to
baselining.

NOTE: In the case of a non-government development artivity, all rlas! I
and N! changes must be concurred with by the Government Procitring
Contracting Officer (PCO) prior to implementation.

I " : ii 7

D. CONFIGURATION STAT;'5 ACCOUNTING

Configuration Status Accounting is the management process of tracking a
change from its official recording (BCR, DPR, SPR, DBCR, etc.) until it is
disapproved, or approved and officially incorporated into the system and
associated documentation. It is also the process of tracking/monitoring the
configuration of operational systems.

Records are maintained giving the current position (status) of the item. These

record/logs include:

Product Log

Module Log

Software Problem Report Log

Data Base Change Request Log

Baseline Change Request Log

Design Problem Report Log

CPCI Index describes the current status of individual documents. It reports the
basic issue or complete revision of each maintainable document and maintains
the current status of each with respect to approve BCR(s). It should contain a
summary record of dates for development milestones. The BCR log should be
used in conjunction with the index and must be consistent. The index is
established within 30 days of the allocated baseline.

BCR Log is initiated following the initiation of the first BCR. Its purpose is to
portray the status of all BCRs.

E. CONFIGURATION MANAGEMENT FORMS

The Configuration Control Directive (CCD), AFLC Form 406, will document all
decisions of the CCB.

The Baseline Change Request, AF Form 1773, formally requests a baseline
change. This form, along with the appropirate attachments, comprises the
proposal which is considered by the CCB.

The Design Problem Report (DPR), AF Form 1774, is used to document

problems identified during reviews and audits.

The Software Problem Report (SPR), AF Form 1775, is used to document a
suspected or existing discrepancey or deficiency in a computer program, it.
documentation, or interfacing hardware.

The Data Base Change Request, AF Form :776, is uLied to request a modifi-
cation to a baselined data base and must accompany an AF Form 1773 if an
established baseline is affected. DBCR(s) can be submitted at any point in the
life cycle after the document(s) defining contents and/or structare of the data
base(s) have been baselined. Some changes may in fact exceed the srope of the
DPD and this would require the submission and approval of a DAR/nAR
amendment.

, , , , .

The decision of the Project Manager can be to:

Reject the Request

Approve

Approve With Specific Changes (which may be delayed implementation
date)

BCR(s) should includet

Identification of Desired Change

3ustification

Summary of Alternatives

Identification of Required Tasks, Responsible Agency, and Schedule

Identification o! Impacts on Schedule, Cost, and Other Systems/CPCI(s)

The AFLC Form 406 is used for coordination and to reflect
approval/disapproval of a Class I change.

The approvee 4,,iiication to the baselined document is done via a change or
modification.

A change is a package of pages which have been modified.

A revision is a complete reissue. A revision is required when over 40% of a
document has changed or will be changed.

The revision is prepared, issued, and identified the same way the original
document was. The revision's specification number will contain a revision
letter.

Change pages will contain specification numbers and date.

Specification numbers are assigned by AFLC/ACTM.

Specification numbers must be on each page in the upper corner opposite the
binding edge.

Version numbers appear only on the CPCI and associated date/documentation
from agency to agency.

F. CM APPLICATION OF CONF!GIJRATION MANAGEMENT TO ADS
DEVELOPMENT

Purpose: to outline method by which HQ AFLC/ACT will implement
management audits of selected A FLC LMS development projects.

Configuration management & procedures for aplication (AFR 300-15,
chap. 2).

-9

Reviews and audits in Configuration Management (APR 300-15, chap. 3).

Specific policy and procedures for application of CMi within AFLC (APR
300-I1S, APLC Supp 1).

Authority for APLC/ACT to conduct audits (AFR 300- 13, APLC Supp 1, para
2-22b; AFLCR '.00-18, para 2-10g) including review of DPDs and DPPs.

References APR 300- 13, APLC/AC 01 171-6.

260

Ill. QUALITY ASSURANCE

Quality Assurance (QA) is the implementation of a series of planned activities
whose objective is to provide confidence that the end products conform to
established technical requirements and performance standards.

A QA Plan is produced based on a review of the DAR, DPI, DPP, and FD. The
plan describes QA functions, responsibilities, and tools (reference AFR 300-15,
Chapter 4 and AFLC Supplement 1).

The QA Program impacts Configuration Management, Testing, Data Manage-
ment, Technical Standards, Program Design and Coding Standards, Reviews and
Audits.

Software QA must be life-cycle-oriented to reduce maintenance costs.

There is not an AFLC software quality assurance program. Therefore it is the
responsibility of the project manager to ensure a "Quality Product" is delivered.

SI

-?261

IV. MCAP

HQ USAF/ACD requires a new MCAP each year by I Oct., six copies (AFR
300-7, para d(I).

The plan covers the four year period beginning two years after date submitted
(AFR 300-7, para d(1).

Its purpose is to document ADP requirements as an aid to planning, budgeting
and management (AFR 300-7, para Sa,b).

AFLC Management Systems Panel will review and approve the MCAP subject to
review by AFLC Planning and Programming Review Board (AFR 300-7, AFLC
Sup 1, par& 3e and Wc OLXc).

HQ AFLC/ACDR is the focal point for MCAP policies and procedures. They
prepare the draft plan and distribute the approved plan.

HQ AFLC/ACD will prepare MCAP Sect. I Command Situation (AFR 300-7,
AFLC Sup. 1, para Sc(b) and forward to arrive in ACDR not later than 15
3uly (AFR 300-7, AFLC Sup 1, para 8d(5)).

HQ AFLC/ACDS will prepare MCAP Sect. 2 ADPS Plan Summaries (AFR 300-7,
AFLC Sup 1, para Sc(XbX2)) and forward to arrive in ACDR not later than 13
3uly (AFR 300-7, AFLC Sup 1, para MO()).

HQ AFLC/ACD wil prepare Sect. 3 and 4, Projected Automation Requirements
(AFR 300-7, AFLC Sup 1, para Bc(4Xb)3a thru 3d).

Preparation of PARs is continuing function. PARs received by 1 3uly will
included in the MCAP for the same calendar year (AFR 300-7, AFLC Sup 1,
para Sd()).

Corrections to MCAP required by ACD will be effected within 21 days from
receipt of notice. Other changes or updates will be submitted 21 days before
effective date (AFR 300-7, ara ld(2)). These changes will be approved by
AFLC Management Systens Panel; sufficient leadtime must be allowed (AFR
300-7, AFLC Sup 1, para d(2)).

:?62
..,

-I

?V J

V. EA/MILESTONE REPORT

A. AF FORM 2053

Economic Analysis (Summary of Alternatives)

Purpose: to compare the net costs for each alternative, excluding baseline
and augmented current system.

Get discount and uniform annual rates from AFR 178-i.

Get Net Annual Costs from AF Form 2054.

Reference: AFR 300-12, para 3-1Oa, 3-11.

Examplet AFR 300-12, Attachment 7.

B. AF FORM 2054

Economic Analysis (Summary of Alternative No.)

Purpose: to compute net cost of an alternative, even thq' baseline and aug-
mented system.

Obtain the data for-

Part Form

I AF Form 2075

liD. AF Form 2056

IV AF Form 2057

Aggregate parts I and 11 to form part Ill.

Combine parts i and IV to form part V.

Part V becomes the input to AF Form 2053.

References: AFR 300-12, para 3-lOb, 3-12.

Example: AFR 300-12, Attachment 8.

C. AF FORM 2055

Economic Analysis (ADPMIS Costs)

Purpose: to compute the detailed ADPMIS Costs of the baseline and each
alternative.

F; -

Use a separate form for each phase of the life cycle, (AFR 300- 12. para
3-3).
Use a separate form for each DPI, Program Element Code (PEC), Com-

mand, or Appropriation if more than one are reportable.

Get cost categories from RCS: DD-COMP(AR)996.

Get salary factor guidance from ACD and include the schedule of factors
identified by source and date with each analysis. If using average rates for
personneo significantly affects choice between alternatives, (APR-300-12,
para 3-13d).

Line H, the "net" ADPMIS COSTS, becomes the input to Section 1, AF Form

2034.

References: AFR 300-12, para 3-106, 3-13.

Examples: AFR 300-12, Attachment 9.

D. AF FORM 2036

Economic Analysis (Non-MIS Costs)

Non-MIS costs include TDY, training, and others not directly identified
with ADP but which are directly related to new systems development.

Report costs in thousands of dollars.

Use a separate form for each phase of the life cycle.

Use a separate form for each DPI, Program Element Code, Command, or
Appropriation if more than one are reportable.

Cros reference costs elements with the milestone reporting system, AF
Form 2060.

Get salary factor guidance from ACD and include the schedule of factors
identified by source and date. If using avarage rates for personnel
significantly affects the choice between alternatives (AFR 300-12, para
3-13d).

Give unique costs on line D and explain in a footnote or addendum.

<I Line E, the total Non-MIS costs, becomes the input to Section TV, AF Form
2054~.

Reference: AFR 300- 12, para 3- lOc, 3- 14.

Example: AFR 300-12, Attachment 10.

E. AF FORM 2057

Economic Analysis (Cost-Reduction Savings)

Purpose: to report the savings resulting from implementing an alternative.

See AFR 300-12. para 3-9(2) for discussion of costs and savings.

Use a separate form for each DPI, Prog-am Element Code (PEC), Com-
mand, or Appropriation if more than one are reportable.

Get data for Part I from AF Form 2055 for baseline system.

Calculate Part II, Augmentation Avoided. Get data from AF Form 2055
for augmented system and subtract cost of baseline system obtained above.

Include in Part III any other savings that can be identified to specific
budgets or major programs.

Lines I, II, and III B3 become inputs to Section IV, AF Form 2054.

References: AFR 300-12, para 3-10c, 3-15.

Example: AFR 300-12, Attachment 11.

F. AF FORM 2058

Milestone Reporting System (Schedule)

Purpose: to describe the milestones for an ADPS/ADS project.

All dates are given in six digit form (YYMMDD).

Key milestones and their codes are given in AFR 300-12, para 3-21d().

Include other reviews/audits specified in DPD, e.g., SDR, PDR, CDR. Do
not use codes except as above.

A short title may be given under "Remarks"

Note the identification of the rows on this form with the columns on AF
Forms 2059 and 2060.

References: AFR 300- 12, para 3-18, 3-21.

Example: AFR 300-12, Attachment 12.KG. AFFORM 2059

Milestone Reporting System (ADPMIS Costs)

p4 oPurpose: to compute the variance analysis by cost element for ADP4IS
Costs.

Note the cross reference of cost categories with AF Form 2055.

Each report must show costs for the current milestone, the next three
milestones and the fuUy operational milestone.

Coiumns D and H record cumulative time and costs between milestones.

Column D gives actual cost to date; column H projects total cost.

Specific details for each column are given in AFR-300-12, para 3-22.

Report is due not later than 30 days after the scheduled milestone date. If
actual completion date will be later than scheduled date, notify HQ
USAF/ACDC of the reason and the anticipated submission date.

Management reviews are required if the incremental cost exceeds the
approved cost by 25% or the milestone slips 120 days. (AFR-300-12, para
3-23).

H. AF FORM 2060

Milestone Reporting System (Non-MIS Costs)

Purpose: to compute the variance analysis by cost element for Non-MIS
costs.

Note the cross reference of cost categories with AF Form 2056.

Each report must show costs for the current milestone, the next three
milestones and the fully operational milestone.

Columns D and H record cumulative time and costs. All other columns
reflect incremental costs between milestones. Column D gives actual cost
o date; column H projects total cost.

Specific details for each column are given in AFR-300-12, para 3-22.

Report is due not later than 30 days after the scheduled milestone date. If
actual completion date will be later than scheduled date notify
HQ USAF/ACDC of the reason and the anticipated submission date.

Management reviews are required if the incremental cost exceeds the
approved cost by 25% or the milestone slips 120 days. (AFR-300-12, para
3-23).

V1. COMMUNICATIONS CONSIDER ATION

Teiecomm memo entry is made to PAR and the Telecommunications Plan
(C 3P2).

Ouring DAR preparation Comm Requirement is determined and defined to
I AFLC/DCO lAW AFR 300-12, AFLC Supp 1, Atch 6, para 30. (OPR-Project

Manage)

Communications alternatives examined for cost (OPR: AFLC/DCO)

A communications concept is selected and discussed with Project Manager
(AFLC/nc)

A Communication Annex is prepared JAW AFR 100-18 for inclusion in the DAR
or OPP (OPR: AFLC/DCO)

APPENDIX G

GLOSSARY OF TERMS FOR SOFTWARE CONFIGURATION MANAGEMENT

(Ref 141)

!.A
,i

GLOSSARY OF TERMS FOR CONFIGURATION MANAGEMENIT*

Acceptance An official act by the customer to accept
transfer of accountability, title, and
delivery of a Configuration Item or other
items on a Contract (e.g., Data Item).

Acceptance Testing - The formal inspection, testing, and/or
Subset of Qualification Tests analysis accomplished in accordance with

Section 4 of a Product Specification to
verify the performance and adequacy of
a production item.

Approved CMange A change for which approval has been
given for change incorporation by the
applicable change control board.

Audits Configuration audits verify confro-mance
to specifications and other contract
requirements. Audits are not reviews.
NOTE: Audits differ from reviee in
that reviews are conducted on a periodic
basis to assess the degree of completion
of technical efforts related to identifiad
wilestones before proceeding with further
technical effort.

a. Functional Configuration Audit (FCA).
The formal examination of func~ional
characteristics' test data foi a
configuration item, prior to accept-
ance, to verify that the item ,as
achieved the performance specified
in its functional or allocated con-
figuration identification.

b. Physical Configuiation Audit 'PC.
The formal examination of the "as-
built" configuration of a unit of aA- CI against its technical doctrcnta-
tion in order to establish the CI's
initial product configuration iden-
tificit ion.

'This list is b;" no means complete ')it contains thore terms mst frequently
used in the inlustry. Tho list has het . cunpi ,d I a:w . variety of indlstry
and government sources.

4 "69U

Baseline A configuration identification dooament
or a set of such documents formally
designated and fixed at a specific time
during a Cl's life cycle. Baselines,
plus approved changes from those base-
lines, constitute the current configura-
tion identification. For configuration
management, there are three baselines, as
follows:

a. Functional Baseline. The initial
approved functional configuration
identification.

b. Allocated Baseline. The initial
approved allocated configuration
identification.

c. Product Baseline. The initial
approved or conditionally approved
product configuration identification.

Computer Equipment Devices capable of accepting and storing
computer data, executing a systematic
sequence of operations on computer data
or producing control outputs. Such
devices can perform substantial inter-
pretation, computation, communication,
control, and other logical functions.

Computer Firmware A microcoded control program that resides
in a Programmable Read Only' kmory (PR)f
or Rcad Only Memory (ROM).

Computer Program A series of instructions or statements in
a form acceptable to computer equipnnent,
designed to cause the executIon of an
operation or serie' of operations.
Computer programs include such items as
operating systems, assemHlers, comilers,
interpreters, data management svsteI,
utility programs, and ma n tcnance'd iag -
nostic prograw. They al-o include

applicable progrims such as pavroll,
inventory control, oj'crtional fligtt,
strategic, tactical, automatic test, cre'w
simulator, and en.incuring amal\-'is
programs. Compiuter prorats PLV\ he

either miclhine depem, h it o- :nathine

independent, anid may ' n ,,, 1 .w . ipurpose
in nature or he tVil td e
requirnent- of a sjp il lrIi' , of
a particulai u;,i.

270

Computer Program Component (CPC) A CPC is a functionally or logically
distinct part of a computer program
configuration item (CPCI), distinguished
for purposes of convenience in designing
and specifying a complex CPCI as an
assembly of subordinate elements.

Computer Program Configuration An aggregate of computer programs, or
Item (CPCI) of the discrete portions (e.g., CPCs,

modules, routines, etc.) thereof, which
satisfy an end use function and which is
designated by the Government for con-
figuration management. CPCIs my vary
widely in complexity, size, and type,
from a special purpose diagnostic program
to a large command and control system.

Computer Program Library A controlled collection of program source
statements on media such as punched cards,
magnetic tapes, or discs. This library
is also the repository for the controlled
master copies of each computer program.

Computer Resources The totality of computer equipment,
computer program, computer data, associated
documentation, personnel, and supplies.

Configuration The functional and/or physical character-
istics of hardware/software as set forth
in technical documentation and achieved
in a product.

Configuration Control The systematic evaluation, coordination,
approval or disapproval, and implementa-
tion of all approved changes in the con-
figuration of a CI/CPCI after formal
establishment of its configuration
identification.

Configuration Control Board A board composed of representatives from
program/project functional areas such as
engineering, configuration management,
procurement, production, test and logistic
support, training activities, and using/
supporting organizations. This board
approves or disapproves proposed engi-
neering changes with each member recording
his organization's official position.
The program/project manager is normally
the board chairman and makes the final
decision on all changes unless otherwise
directed by comnand policy. The board
issues a directive/ruest to implement
its decision.

271

Configuration Identification The current approved or conditionally
approved technical documentation for a
configuration item as set forth in
specifications, drawings, and associated
lists, and documents referenced therein.

Configuration Item (CI) An aggregation of hardware/software, or
any of its discrete portions, which
satisfies an end use function and is
designated by the Government for config-
uration management. CIs may vary widely
in complexity, size, and type, from an
aircraft, electronic or ship system to a
test meter or round of aununition.
During development and initial production,
CIs are only those specification items
that are referenced directly in a contract
(or an equivalent in-house agreement).
During the operation and maintenance
period, any reparable item designated for
separate procurement is a configuration
item.

Configuration Management A discipline applying technical and
administrative 3irection and surveillance
to (1) identify and document the functional
and physical characteristics of a config-
uration item, (2) control changes to those
characteristics, and (3) record and report
change processing and implementation
status.

Configuration Status Accounting The recording and reporting of the infor-
mation that is needed to manage config-
uration effectively, including a listing
of the approved configuration identifica-
tion, the status of proposed changes to
configuration, and the implementation
status of approved changes.

Contract The legal agreement between DOT and
industry, or similar internal ag:-ecment
wholly within the government, for the
development, production, maintenance, or
,mxiification of an item(s).

272

Contract Data Requirements A contract form, DD 1423, listing all
LIST (CDRL) technical data items, selected from anAuthorized Data List, to be delivered Iunder the contract.

Contractor An individual, partnership, company,
corporation, or association having a
contract with the procuring activity for
the design, development, design and
manufacture, manufacture, maintenance,
modification or supply of items under
the terms of a contract. A governmentactivity performing any or all of the
above actions is considered to be a
contractor for configuration management
purposes.

Cost The term "cost" means cost to the
Government.

Non-Recurring Costs One-time costs which will be incurred if
an engineering change is ordered and
which are independent of the quantity of
items changed, such as: cost of redesign,
special tooling, or qualification.

Recurring Costs Cost which are incurred for each item
changed or for each service or documented
ordered.

Critical Item An item within a configuration item (CI)
which, because of special engineering or
logistic considerations, requires an
approved specification to establish
technical or inventory control at the
component level.

Critical Design Review (CDR) This review shall be conducted by the
developer for each configuration item
when detail design is essentially complete.
The purpose of this review will be to
determine that the detail design of the
configuration item under review satisfies
the design requirements established in
the configuration item specification,
and establishes the exact interface
relationships between the configuration

item and other items of equipment and
fac il tics.

*275

Deta (Technical Data and The means for coomunication of concepts,
Infomation) plans, descriptions, requirements, and

instructions relating to technical
projects, material, systems, and services.
These my include: specifications,
standards, engineering drawings, associ-
ated lists, manuals, and scientific and
technical reports, They may be in theforn of documents, displays and sound
records, punched cards, and digital or

analog data. a n

Data Package A collection of data products (items)
which is complete for a specific use.

Decommissioning Change in program status from operational
to inactive.

Debugging A process to detect and remedy inadequacies,
preferably prior to formal testing and
operational use.

Deficiencies Deficiencies consist of two types:
conditions or characteristics in hardware/
software which are not in compliance with
a specified configuration, or inadeqtate
(or erroneous) configuration identifica-
tion which has resulted or may result, in
configuration items that do not fulfill
approved operational requirements.

DOD Components Term which describes the Office of the
Secretary of Defense, the Military
Departments, Office of the Joint Chiefs
of Staff, and the Defense Agencies.

[Documentation The specifications, reports, plans and
procedures u, ed to document and support
computer programs.

! AICThe Defense Systems Acquisition Review
Council; an advisory body to the
Secretary of Defense on major system
acquisition progranms and related policies.

Embedded Adjective modifier; integral to, from the
design, procurement, and operations point
of view, espoused in WXTD Directive S000.1.
For :omputer programs, this inqlies those
prograrts which are intcgral to, hit part
of .- larger Vtem.

. ¢ ,

Engineering Change An alteration in the configuration of a
configuration item or an item, delivered
or to be delivered, or under development,
after formal establishment of its con-
figuration identification. Changes may
be Class ! or II.

Engineering Change Priorities The rank assigned to a Class I engineering
change, which determines the methods and
resources to be used in review, approval,
and implementation. There are three
recognized priorities:

- Emergency
-Urgent
- Routine

Engineering Change Proposal A term which includes both a proposed
engineering change and the documentation
by which the change is described and
suggested.

ECP Types A term covering the subdivision of ECPs
on the basis of the completeness of the
available information delineating and
defining the engineering change, i.e.,
preliminary or formal ECP.

Form, Fit, and Function That configuration comprising the
physical and functional characteristics
of the item as entity but not includi'ig
any characteristics of the elements
making up the item.

Formal Qualification Review (FQR) The FQR is a review to ensure that the
quality assurance tests have been accomp-
lished that verify that the item as
designed performs as required by the
specification performance requirements.
An FQR is held for each new design

'I Computer Program Configuration Item.
., i(MII.-STD)-483)

Function A discrete action required to achieve a
given objective, to he accomplished by
hardware, computer program, perqorinel,
facilities, procedirl data, or a
combination thereof. It is an operation
the rystem im.,t perforn in ordei to ful-
fill it- intended 1111 -'iO l.

Rnctional Area, A distinct group of system performance
requirements which, together with all
other such groupings, form the next
lower level breakdown of the system on
the basis of function.

Functional Characteristics Quantitative performance, operating and

logistic parameters and their respective
tolerances. Functional characteristics
include all performance parameters, such
as range, speed, lethality, reliability,maintainability, safety.

Functional Configuration The current approved technical documenta-
Identification (FCI) tion for a configuration item which

prescribes: (1) all necessary functional
characteristics, (2) the tests required
to demonstrate achievement of specified
functional characteristics, (3) the
necessary interface characteristics with
associated Cls, (4) and CIs key functional
characteristics and its key lower level
CIs, if any, and (5) design constraints,
such as envelope dimensions, component
standardization, use of inventory items,integrated logistics support policies.

Hardware/Softwre Hardware or software, or a combination of
both, in which the software includes only
that associated with hardware foi opera-
tional use, e.g., computer programs for
command and control, handbooks for opera-
tions, maintenance, etc., and excludes
fabrication specifications, drawings, etc.

Integrated Logistic Support A composite of the elonente necessary
to assure the effective and economical
support of a systenm or quipment at all
levels of maintenance for its program
ming life cycle. The eloiients include
all resources necessar' to maintain and
operate an equipment or %,c ipn., cvstem,
and are categori:ed as folI ow
(1) planled mainten.nce, (2) loi,;tic
support personnel, I;) tcchnic;l logistic
data and infornition, (.11 ,pp a equip-
ment, (5) sparev irid t-cpai r palt,:,
(6) faciliti,-;, and ("I contrat tra n
tenance.

276

, ,-- fllA
' i ' i ' d

Item (When the tern is used Any level of hardware assembly below awithout a modifier) system; i.e., subsystem, equipient,
component, subasse-'bly, or part. Also
see "Configuration I ten", "Crit ical
Item", and Privately Developed Item".

Interface Control Working A group chartered as the official channelGroup (ICIW;) among contractors, the customer, andother agencies to resolve interface
problems, exchange new interface
information, document change agreements,
and coordinate Engineering Change
Proposals affecting interfaces within
a project.

Master The official version of a document,
system, or program.

lbintenance/?4odification The maintenance of a computer program ito a Program defined to be any modification to the
instruction of an operating digital
computer program or system for corrective
or improvement purposes.

nemonic A brief alphabetical title used to refer
to a program, subprogram, subroutine,
etc. It often gives information about
the program function or serves as a
memory aid in this regard.

Object Form Coded instructions that can be acted
upon directly by a computing system
without requiring an additional proc-
essing step.

Operational Systems Development Includes a research and development
effort directed toward development,
engineering, and test of systems,
support programs, vehicles, and weapons
that have been approved for production
and Service Employment.

Physical Characteristics Quantitative and qualitative expressions
of material features, such as compo-
sition, dimensions, finishes, for,
fit and their respective toleran-s.

277

i..

Preliminary Design Review (PDR) This review shall be conducted for each
configuration item prior to the detail
design process to: evaluate the progress
and technical adequacy of the selected
design approach; determine its compat-
ibility with the performance require-
ments of the configuration item
Development Specification; and establish
the existence and compatibility of the
physical and functional interfaces
between the configuration item and other
items of equipment of facilities.
(NIL-STD-IS21)

Product A software product is a c,4p iter program
and its associated documentation. It
may be in the form of card decks, mag-
netic tapes, disk-packs, or other
physical media capable of transmitting
its contents directly to a computer.

Privately Developed Item An item completely developed at private
expense and offered to the Government
as a production article, with Government
control of the article's configuration
normally limited to its form, fit, and
function.

Project Work Breakdown A project WBS is defined as the complete
Structure (Project WBS) WBS for the project, containing all WBS

elements related to the development
and/or production of the defense material
item. The project WBS evolves fron the
project summary WBS extended to include
all contract WBS(s) and equivalent WSs'
resulting from DOD in-house efforts.
The WBS is used for cost accounting and
monitoring of the project.

Release rhe transfer of physical custody and
control of products or d.ocum.-itation
from the originator to anotht' organira-
tion in i controlled envirorur-nt, such
as through a formal release -stem or
organi zation.

"78

AD-AIIS 501 AIR FORCE INST OF TECH WRIGH4T-PATTERSONd APS O44 50400-ETC F/4 9/2
SOFWARE GUAITT NTRICSI A SOFTWARE MANAGE04ENT MNITORING MENI-TC(Ul
MAR 53 S J JARZONVEI(

W#CLASSIFZEO AFlT/GCS/MA/fbtNIN

~ EhEEEhh~Im
EomhhhEEmhohmhE

EEEEE EEE

~7

Retrofit (Retroactive Retrofit) Modification of a configuration item
to incorporate changes made in later
production of a similar type.

Software A combination of associated computer
programs and computer data required to
enable the computer equipment to perform
computational or control fucntions.

Software Engineering Science of design, development, imple-
mentation, test, evaluation, and main-
tenance of computer software over its
life cycle.

Software Data Package A compilation or physical grouping of
all required documentation: listings,
card decks, tapes, etc., to support a
computer program.

Source Form Coded instructions written in one of
several programing languages that
cannot be directly acted upon by a
computing system without requiring an
interim processing conversion to a
machine language (also see "Object FonrT').

Software Reliability The probability that a computer program
configuration item will perform its
intended function for a specified
interval under stated conditions.

Specification A docment intended primarily for use
in procurement, which clearly and
accurately describes the essential
technical requirements for items, materials
or services including the procedures by
which it will be determined that the
requirements have been met.

Specification Addendum This data item is used to: create a new
computer program configuration item
which is similar to an existing computer
program configuration item, with minimum
redesign effort, and apply a formal
means of writing a specification for a
new computer program configuration item
by changing an existing specificatio for
a computer program configuration item in
a ,qanner which permits ready comparison
of the exact rela-ionship between two
computer program configuration items.

279

Specification Change This document is used to propose, trans-
Notice (Sad) mit, and record changes to a specifica-

tion. In the proposal or preliminary
form, prior to approval, the SC0 supplies
copies of the pages containing the
proposed changes.

System Specification A document which states the technical
and mission requirements for a system as
an entity, allocates requirements to
functional areas (or configuration
items), and defines the interfaces be-
tween or among the functional areas.

Development Specification A document applicable to an item below
the system level which states perform-
ance, interface, and other technical
requirements in sufficient detail to
permit design, engineering for service
use, and evaluation.

Product Specification A document applicable to a production
item below the system level which states
item characteristics in a manner suitable
for procurement, production, and accept-
ance.

imnction (Performance) A product specification which states:
(1) the complete performance require-
ments of the product for the intended
use, and (2) the necessary interface
and interchangeability characteristics.
It covers form, fit, and function.

Fabrication (Design) A product specification which states:
(1) a detailed description of the parts
and assemblies of the product, usually

* by prescribing compliance with a set
of drawings, and (2) those performance
requirements and corresponding tests
and inspections necessary to assure
proper fabrication, adjustment, and
assembly techniques.

* i280

System Design Review (SDR) This review shall be conducted when the
definition effort has proceeded to the
point where system requirements and the
design approach are more precisely
defined, (i.e., alternate design
approaches and corresponding test
requirements have been considered and
the contractor has defined and selected
the required equipment, logistic support,
personnel, procedural data, and facili-
ties). This review shall be in suffi-
cient detail to ensure a technical
understanding between the contractor and
the procuring activity on: the system
segments identified in the system
specification and the configuration
items identified in the configuration
item performance specification(s).
(14IL-STD- 1521)

System Requirements Review (SRR) The objective of this review is to
ascertain the adequacy of the contractor's
efforts in defining system requirements.
It will be conducted when a significant
portion of the system functional require-
ments has been established. (MIL-STD-lS2l)

Subcontractor A "subcontractor" is an individual,
partnership, corporation, or association,
who (which) contracts with a contractor
to design, develop, design and manu-
facture, manufacture items, which are or
were, designed specifically for use in
military application.

System A composite of subsystems, assembliesi (or sets), skills, and techniques
capable of performing and/or supporting
an operational (or non-operational)
role. A complete system includes
related facilities, items, material,
services, and personnel required for
its operation to the degree that it can
be considered a self-sufficient item in
its intended operational (or non-
operational) and/or support environment.

281

Systm./Subsystem Specification This specification may be prepared to
guide development of large projects and
my be used to prepare individual sub-
system specifications. The system/
subsystem is a technical document pre-
pared to describe the system. It is
detailed as much as possible concerning
environment and design to provide
maximum guidance for program design.
All system/subsystem interfaces are
defined. (SECNAVINST 5233.1)

Test Plan The acceptance test plan, provdes an
overall integrated outline of the total
test program, program, including: test
objectives, identification of test areas,
and responsibilities.

Test Report A document containing the results and
analyses of tests executed during
validation and acceptance testing.

Vendor A "vendor" is a manufacturer or
supplier of a commercial item.

Version Description Douet This data item shall be used to accompanychanges to an approved and released

computer program. Its purpose is to
identify the changes made and the exact
version of a computer program to be
delivered.

Waiver A written authorization to accept a
configuration item or other designated
items, which during production or after
having been submitted for inspection,
are found to depart from specified
requirements, but nevertheless are
considered suitable for use "as is' or
after rework by an approved methot.

282

APPENDIX H

GLOSSARY FOR SQA TOOLS AND TECHNIQUES

.1

TECHNIQUES

The Twenty-One Techniques are Listed
in Tables X, XI, and XII

1. ALGORITHM EVALUATION TEST. A technique usel to
evaluate critical algorithm trade-offs (i.e., speed versus
size versus precision) before the design is finalized.
Often called "the hardest out first method," the technique
creates a detailed design based upon trial coding results
for key algorithms. The algorithms are often extensively
exercised in a simulated environment to ensure mission
requirements are satisfied.

2. ANALYTICAL MODELING. A technique used to express
mathematically (usually by a set of equations) a
representation of some real problem. Such models are
valuable for abstracting the essence of the subject of
inquiry. Because equations describing complex systems tend
to be complicated and often impossible to formulate, it is
often necessary to make simplifying assumptions, which may
tend to distort accuracy (Ref 90).

3. AUDITING. A formal technique employed to examine and
verify through inspection either the status of a program
and its documentation or the adherence of project personnel
to established procedures. Scheduled audits are normally
contractually imposed and periodically held. Unscheduled
audits are utilized at random intervals to assess
compliance with quality requirements.

4. CODE INSPECTION. A disciplined technique used for
inspecting the code and identifying errors. Participants
have well-defined roles and criteria for evaluating the
code. If errors are identified, the code is reworked.
Follow-up procedures are used to ensure that the errors
have been corrected (Ref 29).

5. CORRECTNESS PROOFS. A technique used to prove the
* correctness of programs using means similar to those

employed to prove mathematical theorems. Axioms and
theorems derived are used to establish the validity of the
program with respect to a precise specification of its
purpose. The most frequently used method is known as the
inductive assertion or Floyd method (Ref 91). Several
approaches are being pursued. One approach seeks to
demonstrate program correctness a priori by establishing
the proof prior to implementation. Another approach uses

284

8-

an interactive system to prove correctness a
posteriori (Ref 92).

6. DESIGN INSPECTION. A disciplined technique used for
inspecting the design and identiping errors. Participants
have well-defined roles and criteria for evaluating the
design. If errors are identified, the design is reworked.
Follow-up procedures are used to ensure that the errors
have been corrected (Ref 29).

7. ERROR-PRONE ANALYSIS. A technique employed during
coding to identify areas of the program that have required
abnormally frequent correction and change. These areas can
either be reworked or subjected to an extensive test
effort (Ref 93).

8. EQUIVALENCE CLASSES. A technique used to automatically
identify a complete set of test cases for a program. The
set is interpreted in terms of inequalities involving
program variables that define a set of conditions necessary
for the particular program flow to actually occur. Some
experience in the practical application of the technique
has been reported (Refs 94, 95).

9. EXECUTION ANALYSIS. A technique employed during test
to investigate program behavior errors and to identify
areas in the code that were either untested or not fully
tested. The program is executed and statistics are
collected. Test results and the statistics are then
analyzed to insure that each interface, functional and test
requirement has been correctly mechanized by the code.

10. FUNCTIONAL TESTING. A technique used to demonstrate
that the software performs its specifications
satisfactorily under normal operating conditiois, computing
nominally correct output values from iominal input
values (Ref 96).

11. LOGICAL TESTING. A technique used to confirm that the
code performs its computation correctly. Items validated
by logical testing include arithmetic (i.e., precision,
accuracy, etc.), error handling, initialization,
interfaces, and timing (Ref 96).

12. PATH TESTING. A technique used to confirm that certain
test-effectiveness measures based on the program's control
topology have been realized. The technique assures that a
sufficient number of statements, branch paths, and
subroutine calls have been exercised during the program
execution. It also helps identify a complete set of test
cases for the program (Ref 97).

13. POST-FUNCTIONAL ANALYSIS. A technique employed after
completion of functional testing to identify functionally
weak areas in the program. The recorded test restilts are

285

analyzed and the quality of the final product is
determined (Ref 93).

14. REVIEWING. A technique employed to examine and verify
through inspection either the status of a program and its
documentation or adherence of project personnel to
established procedures. Scheduled reviews are normally
contractually imposed and periodically held (Ref 87).
Informal reviews are held frequently to assess in detail
the technical adequacy of the software product (Ref 98).

15. SIMULATION. Simulation is the process of studying
specific system characteristics by use of models exercised
over a period of time and a variety of conditions for the
purpose of evaluating alternatives, timing, system
capacities, performance, and constraints within the
confines of that system (Ref 99). Simulation can be used
by quality assurance throughout the life cycle. It can
assist in evaluating conceptual trade-offs (Ref 100). It
can also be used to model the environment and provide
realistic test inputs to a program being examined.

16. SOFTWARE QUALITY METRICS. A technique used to
quantitatively assess the quality of software throughout
the SDLC. Measurements or metrics provide a software
monitoring method which gives an indication of the
progression toward a specified quality (Ref 17).

17. STANDARDIZATION. A technique used to create an
authoritative model against which products and/or
procedures can be compared in order to determine their
quality. Software items for which standards can be easily
established include documentation (Refs 101, 102),
languages (Refs 103, 104), designs (Refs 105, 8, 106), and
structured programming (Ref 107).

18. STATIC ANALYSIS. A technique employed during test to
identify weaknesses in the source code. The syntax of a
program is examined and statistics about it are generated.

Items such as relationships between module, program
structure, error-prone constructions, and symbol/subroutine
cross-references are checked and violations of established
rules are analyzed.

19. STRESS TESTING. A technique employed to confirm that
the code performs its specifications satisfactorily under

extreme operating conditions, computing nominally correct
output values from worst case input values (i.e.,
singularities, end points for the range of data, etc.).

20. SYMBOLIC EXECUTION. A technique that employs symbolic
data to confirm that the software performs properly.
Symbolic execuLion al ows one to choose intermediate points
in the test spectrum ranging from individual test runs to
correctness proofs. Its results can be used to develop a

286

minimum set of test cases (Refs 108, 109).

21. WALK-THROUGHS. A technique used for reviewing the
design or code and identifying errors. The responsible
prograumer discusses his product with his peers and
solicits their constructive advice. Product modifications
are then made at the discretion of the programmer to
correct problems identified during the review (Ref 110).

*2I

:1 l

28

TOOLS

The Thirty-Three Tools are Listed
in Tables X, XIII, and XIV

1. ACCURACY STUDY PROCESSOR. A computer program used to
perform calculations or assist in determining if program
variables are computed with required accuracy. The
processor accepts mathematical equations and data as
inputs. It then uses the data as variables in the
equations and solves them (Ref 111).

2. AUTOMATED MEASUREMENT TOOL. A computer software
package that collects development data through manual and
automatic input. The AMT derives metric scores which
reflect the level of quality that the developing software
exhibits. It generates reports that show a quantitative
measure of the quality attributes and factors being
considered (Refs 17, 23, 88).

3. AUTOMATED TEST GENERATOR. A computer program that
accepts inputs specifying a test scenario in some special
language, generates the exact computer inputs, and
determines the expected results. The NASA-developed
Automated Test Data Generator (ATDG) serves as one
example (Ref 112). ATDG takes identified code segments,
determines all possible logic transfers between those
segments, defines a path through the module under test, and
generates input data required to execute the selected
paths. The General Electric automated software test driver
serves as another example (Ref 113). This program
automates the process of test planning, test setup, test
execution, and test analysis. Other generators are
described in a recent report (Ref 114).

4. COMPARATOR. A computer program used to compare two

- versions of the same computer program under test to
establish identical configuration or to specifically
identify changes in the source coding between the two
versions (Ref 90).

5. CONSISTENCY CHECKER. A computer program used to
determine (1) if requirements and/or designs specified for
computer programs are consistent with each other and their
data base and (2) if they are complete. The consistency
checker computer program developed by TRW is an
example (Ref 115).

288

6. CROSS-REFERENCE. A group of computer programs that
provide cross-reference information on system components.
For example, programs can be cross-referenced with other
programs, macros, parameter names, etc. This capability is
useful in problem-solving and testing to assess impact of
changes to one area or another (Ref 90). This capability
should be provided in most compiler environments (Ref 116).

7. DATA BASE ANALYZER. A computer program that reports
information on every usage of data, identifies each program
using any data elements, and indicates whether the program
inputs, uses, modifies, or outputs the data element. Any
unused data is printed. Errors dealing with misuse and
nonuse of data and conflicts in data usage are identified
during the analysis (Ref 90).

8. DEBUGGER. Compile and execution-time check-out and
debug capabilities that help identify and isolate program
errors. They usually include commands or directives such
as DUMP, TRACE, MODIFY CONTENTS, BREAKPOINT, etc. (Ref 90).
Some debuggers operate at the source level (e.g., SIMDDT
for SIMULA 67, and COBDDT for COBOL on the PDP-10) and
others at the objective level with some additional source
information (e.g., DDT for FORTRAN on the PDP-10)(Ref 117).
The following types of basic information are normally
provided:

TRACE: A timed record of program execution and
machine environment information.

DUMP: A record of selected portions of memory or
register usage output after a specified point in the
program's execution has been reached.

SNAP: A record of intermediate values of items
captured during program execution.

BREAKPOINTS: A facility whereby the normal computation
is interrupted and debugging activities commence
execution.

9. DECISION TABLES. A mechanism used to represent
information on program conditions, rules, and actions in
tabular form that can be automatically translated to
executable code by a processor. Decision tables are a

tabular representation of the design which can be used to
clarify the control flow of decision alternatives by
presenting the information in a concise and understandable
format (Ref 99). A dated but useful survey ot automated
decision table processors is available (Ref 118).

10. DYNAMIC ANALYZER. A computer program that instruments
the source code by adding counters and other

289

statistics-gathering sensors and produces reports on how
thoroughly the various portions of the code have been
exercised after the augmented code is executed. Dynamic
analyzers provide information useful for tuning,
optimization, and test case design (Ref 90). Many dynamic
analyzers have been developed. Comparative analysis of
several analyzers (Ref 119) and user feedback with such
systems have been published (Ref 120).

11. DYNAMIC SIMULATOR. A computer program used to check
out a program in a simulated environment comparable to that
in which it will reside. Closed-loop effects between
computer and environmental models are gained when the
various models respond to inputs and outputs. The
simulator allows the environment to be stabilized at a
specific configuration for any number of runs required to
observe, diagnose, and resolve problems in the operational
program (Ref 90). The Dynamic Test Station (DTS) being
developed by the U.S. Air Force to support the test of the
operational flight software for the F-16 fighter aircraft
serves as an example (Ref 121).

12. EDITOR. A computer program used to analyze source
programs for coding errors and to extract information that
can be used for checking relationships between sections of
code. The editor can scan source code and detect
violations to specific programming practices and standards,
construct an extensive cross-reference list of all labels,
variables and constants, and check for prescribed
program formats (Ref 90).

13. FLOWCHARTER. A computer program used to show in detail
the logical structure of a computer program. The flow is
determined from the actual operations as specified by the
executable instructions, not from comments. The flowcharts
generated can be compared to flowcharts provided in the
computer program design specification to show discrepancies
and illuminate differences (Ref 90). Several flowcharters
such as AUTOFLOW and FLOWGEN are commercially available.
Several structured flowchart representations have been
proposed (Ref 122).

14. HARDWARE MONITOR. A unit that obtains signals from a
host computer through probes attached directly to the
computer's circuitry. The signals obtained are fed to
counters and timers and are recorded. These data are then
reduced to provide information about system and/or program
performance (CPU activity, channel utilization,
etc.) (Ref 123). Several useful articles on using this
tool have appeared in the literature (Refs 124, 125).

15. INSTRUCTION TRACE. A computer program used to record
every instance a certain class of operations occurs and
triggers event-driven data collpction. In some cases, this
creates a complete timed record of events occurring during

290

program execution (Ref 90). Experience using traces to
locate sources of nonrepeatable, intermittent malfunctions
has been reported (Ref 126).

16. INTERFACE CHECKER. A computer program used to
automatically check the range and limits of variables as
well as the scaling of the source program to assure
compliance with interface control documents. Other
computer programs have been developed to automatically
verify that modularity rules have been followed (Ref 127).

17. INTERRUPT ANALYZER. A computer program that determines
potential conflicts to a system as a result of the
occurrence of an interrupt (Ref 90).

18. LANGUAGE PROCESSORS. Computer programs used to
translate high-level or symbolic instruction mnemonics into
computer-oriented code capable of being executed by a
computer. Compilers, assemblers and meta-assemblers are
example tools used for program development. Other language
processors have been developed to support requirements
generation and validation (Ref 128), design (Ref 129), and
test (Ref 113). Preprocessors have been developed to
support implementation of modern programming techniques.

19. LIBRARIES. A collection of organized information used
for reference or study. Many varieties of library systems

can be implemented. Some manage the storage and
distribution of the computer program in both source and
object form. Others manage the computer program, its
documentation and related test data (i.e., test cases,
procedures, results). Programs which support their
implementation are commercially available and include
Applied Data Research's LIBRARIAN and International
Business Machine's Program Production Library (PPL)
(Ref 90). The use of a library and its effect on
productivity have been reported (Ref 130).

20. LOGIC ANALYZER. A computer program used to
automatically reconstruct equations forming the basis of a
program and to flowchart assembly language programs. One
such program translates assembly language instructions into
a machine-independent microprogramming language and builds
the microprogramming statements into a network in which the
flow of control is analyzed and equations are
reconstructed (Ref 131).

21. MANAGEMENT INFORMATION SYSTEM. Consists of a
computer-based information system (a particular combination
of human service, material service, and equipment service)
for the purpose of gathering, organizing, communicating,
and presenting information to be used by individuals for
planning and controlling an enterprise (Ref 132). Several
packages which serve as essential elements of a management
intormation system are discussed with examples in a recent

publication (Ref 133).
291

Mim

22. REQUIREMENTS TRACER. A computer program used to
provide traceability from requirements through design and
implementation of the software products. Traceability is
characterized to the extent that an audit trail exists for
the successive implementation of each requirement. The
University of Michigan-developed Problem Statement
Language/Analyzer serves as an example (Ref 134).
Experience using the Michigan and other similar systems has
been reported (Ref 135).

23. SIMULATOR. A computer program that provides the target
system with inputs or responses that resemble those that
would have been provided by the process for the device
being simulated. The simulator's function is to present
data to the system at the correct time and in an acceptable
format (Ref 90). Several of the many varieties of
simulators available are briefly described as follows:

Interpretive computer simulator: A computer program
used to simulate the execution characteristics of a
target computer (provides bit-for-bit fidelity with
results that would be produced by the target machine)
using a sequence of instructions of the host computer.

Peripheral simulator: A computer program used to
present functional and signal interfaces representative
of a peripheral device to the target system.

Statement-level simulator: A computer program used to
simulate the execution characteristics of a target
computer at the source instruction-level using a
sequence of instructions on the host computer.

System simulator: A mechanization of a model of the
system (hardware, software, interfaces) used to predict
system performance over time.

24. SOFTWARE MONITOR. A computer program that provides
detailed statistics about system performance. Because
software monitors reside in memory, they have access to all
the tables the system maintains. Therefore, they can
examine such things as core usage, queue lengths, and
individual program operation to help measure performance.
Use of software monitors has been described in a recent
publication (Ref 136).

25. STANDARDS. Procedures, rules, and conventions used for
prescribing disciplined program development. Architecture
and partitioning rules, documentation conventions, language
conventions, configuration, and data management procedures,
etc., are typical examples under this category (Ref 123).

26. STANDARDS ANALYZER. A computer program used to
automatically determine whether prescribed programming
standards and practices have been followed. The program

292

L

can check for violations to standards set for suc-
conventions as program size, commentary, structure,
etc. (Ref 90). The National Bureau of Standards-developed
FORTRAN Analyzer serves as an example (Ref 137).

27. STATIC ANALYZER. A computer program used to providE
information about the features of a source program. ThiE
type of tool examines the source code statically (not under
execution conditions) and performs syntax analysis,
structure checks, module interface checks, event sequence
analysis and other similar functions. Several of the many
varieties of static analyzers available are briefly
described as follows:

Overlay analyzer: A computer program that examines the
source program in order to determine mutually disjoint
segments that can reside in the same area of memory at
run time (Ref 117).

Units consistency analyzer: A computer program which
analyzes the source code version of equations to assure
that they consistently reference the global data
base (Ref 137).

Usage statistics gatherer: A computer program that
computes statistics based on the number of times
various items appear in a source program (Ref 117).

28. STRUCTURE ANALYZER. A computer program used to examine
source code and determine that structuring rules set for
either the control or data structure, or both, have been
obeyed. Typically, the program parses an equivalent model
of the control or data topology before commencing analysis.

29. TEST BED. A test site composed of actual hardware
(hardware test site) or simulated equipment (software test
site) or some combination. A hardware test site uses the
actual computer and interface hardware to check out the
hardware/software interfaces and actual input/output. The
program execution is confirmed using actual hardware timing
characteristics, but the output is limited and test
repeatability is a prob.em. A software test site uses an

" I instruction-level and/or statement-level simulator to model
actual hardware. A software test site permits full control
of inputs and computer characteristics, allows processing
of intermediate outputs without destroying simulated time,
and allows full test repeatability and good diagnostics.
The Shuttle Avionics Integration Laboratory represents an
elaborate hardware test bed (Ref 138) and the Software
Design and Verification System (SDVS) represents a
sophisticated software test bed (Ref 139).

30. TEST DRIVERS, SCRIPTS. To run tests in a controlled
manner, it is often necessary to work within the framework

of a "scenario"--a description of a dynamic situation. To
793

accomplish this, the input data files for the system must
be loaded with data values representing the test situation
or events to yield recorded data to evaluate against
expected results. These tools permit generation of data in
external form to be entered into the system at the proper
time (Ref 90).

31. TEST-RESULT PROCESSOR. A computer program used to
perform test output data reduction, formatting, and
printing. Some perform statistical analysis where the
original data may be the output of a monitor (Ref 90).

32. TEXT EDITOR. A computer program used to prepare
documentation and perform work-file edits (erase, insert,
change, and move words or groups of words). The programi
requires a facility for on-line storage and recall of text.
units for inspection, editing, or printing (Ref 90).

33. TIMING ANALYZER. A computer program that monitors and
prints execution time for all program elements (functions,
routines, and subroutines). A more detailed description of
the tool appears in the literature (Ref 131).

I

* 294

- I1*

731

APPENDIX I

TOOL SUR~VEY

(Ref 84)

-w,

-I

TOOL SURVEY

A survey of software tools on the candidate target
environments was conducted during the first phase of the
AMT development. 84 The purpose of the survey was to
identify software tools that could be incorporated in the
AMT. The survey was limited to the candidate enviror,ments
because it was felt it was beyond the scope of this effort
to transport tools from other environments. The criteria
for selection of a tool for consideration for incorporation
in the AMT were:

o Applicability to software measurement (Did the tool
provide any metric data?)

o Portability of tool (Can the tool be used on differ-
ent hardware configurations?)

o Interoperability of the tool (How many modifications
to the tool are necessary?)

o Usability of the tool (How much effort is required
to learn how to operate the tool? How much effort
is there to preparing input and interpreting output
that was tool-driven?)

The results of this Tool Survey are presented in matrix
form. Background information and analysis of the
state-of-the-art of software tools and their applicability
to metric appear before it, preceding the Tools Survey. As

- a result of this analysis, selective tools that have
compatible hardware/operating systems with the target
environments are also included in the matrix. Finally, the
last part deals with the actual tools to be used in the AMT
were considered for use, or were applied during its
development.

CODING AND IMPLEMENTATION: METRICS APPLICABILITY

The origin of code inspection was structured programming
and allied software engineering technologies of the early
1970's. The goal of automated static analysis/evaluation
has been to automate the compliance with the techniqaeos and
make a search of program properties.

P96

The program parameters are structure-based (program logical
and data structure, naming conventions, documentation
conventions, etc.), control/data flow based (avoidance of
undue control complexity; assurance of well-definedness of
variables, etc.), and interface based (assurance of
correspondence between modules, subsystem, inter-system,
etc.). The anomaly-detecting metrics have to do with
standards enforcement (deficiencies in source code),
whereas the predictive metrics quantify the logic of design
and implementation.

For example, the JOVIAL Automated Metric System (JAMS) is
designed to collect structural information about JOVIAL
programs. GE's Integrated Software Development System
(ISDS) provides a capability to analyze other languages
including FORTRAN, PDL, IFTRAN, and PASCAL. A major
subsystem of ISDS, the generalized parser (GNP), the
grammar description language (GDL) and grammar tables,
provides this capability and will be used in the AMT.

Symbolic evaluation of code has as its goal the
"interpretation" of program behavior at the programming
language level. Assumption must be made about the
environment, the deterministic properties of the
programming language behavior, and the outcome of symbolic
execution results. On systems such as DISSECT or MACSYMA
the user interactively chooses a path and performs symbolic
interpretation of actions along the chosen path. The
system then displays the "formulas" to the user. The user
compares original and implemented formulas for equality.
Differences between computed and actual formulas are
mistakes. Special formula formatting methods are used to
make these differences highly visible. Final control
software is not yet available. Symbolic evaluation has
good candidate potential for the accuracy metrics at the
system level.

The final type of static analysis tools, proof of
* correctness, can be used at the system level, subsystem

level, or the module level as assessments of different
levels of correctness. The Failure of Proof Method (FPM),
uses a mathematical approach to proving the correspondence
between a program and its formal specification. TheA consistency metric is highly visible here.

Dynamic testing is achieved through system exercising of
programs. Typical self-testing metrics for higher level
language systems have been built on a experimrntal hasis
and include-

o Automatic specified percentage of program logical
segment coverage in any one test; aggregated test
coverage of close to 100%.

297

o Assistance in setting input values and evaluating
output values.

o Some form of automated results comparison.

These dynamic test tools consist of two basic modules, an
instrumentation module and an analyzer module. The source
language program is submitted directly to the
instrumentation module. Then the instrumentation module
accepts the source program of the module under test and
instruments it by inserting additional statements in the
form of counters or sensors. The instrumented source file
is compiled and executed. At this point an analyzer module
produces a report documenting the behavior under the test
during its execution.

Typical metric-like data reported are:

o Max and min values of variables.

o Number and percentage of subroutine calls executed.

o Measures of program complexity.

o Statement consistency checks.

o Program cross-references.

o Trace capability.

o Flagging of non-ANSI 7ode.

o Logically impossible - path detection.

o Subroutine argument/parameter verification.

o Data range check.

o If statement trace.

o Branch trace.

o Subroutine/statement timing.

o Min/max assignment values.

o First/last assignment values.

o Min/max DO Loop Control Variable.

o Final DO Loop Index Value.

o Final branch values.

298

o Statement, path, segment, module interface or flow
execution frequencies.

o Specific data associated with each executable source
statement.

o Subroutine retrace capability, complete calling
tree, reverse execution capability.

o Performance indices for modules and input data.

A list of dynamic tools would include: JAVS, CABS, FAVS,
RXVP, FORTUNE, CIP, FORSAP, FETE, PROGFORT, PROGTIME, TPL,
and TAP.

The goal of mutation analysis is to show that small changes
in program are discovered by test data. Conversely, the
test data must be strong enough to catch the significant
errors. Relevance to error detection metrics is obvious.

The Pilot Mutation System (PIMS) has been applied tc
FORTRAN and COBOL pilot systems. Magnitude of the mutant
error is classified as:

o Program does not compute.

o Program computes but does not run test data.

o Program compiles, test run is satisfactory, and the
program is either logically equivalent to the ori-
ginal or test data is not good enough.

Reliability analysis is still in its infancy. The goal is
to determine whether all defects have been reliably removed
by tests. Any error must be made known by some combination
of inputs. Following this theoretical approach of
examining all possible input combinations is prohibitive in
terms of cost effectiveness and computer time/capacity.
The Next Error Discovery Predition method fails because
software reliability simply does not follow the probability
laws of hardware reliability.

MATRIX OF SOFTWARE TOOLS

The matrix of software tools having potential metric
applicability follows. It includes tools currently in use

4 or planned for at RADC and additional non-RADC tools also
worthy of consideration for AMT development or usage.

299

--- --i I
-,-,--

iK

.,,...,.
I

0
0 0

C - -

C. CA 2

4..In

301

.66

- n n -i

3. 2- 1^6

R st 5

, 1

S' . - 1 % -'. -3-IL

-, A I

- IL

1 1 z-0 L 1

, -

'- - "" " i

.. ,, I _ -=

--- -... I

. " d/ I III . . . I

~300

.'z

32 4c

* ~ I P

0 'A

IL1.

u~ 's-

i L~t _____ _____7)___5

___ ___ ___ to_ I~

32. U.

- 1 c; a~ ~ -

- - I0

i: I: :!

C1- 2-

I - 3

-I

Rig

ddl

i i i
i i i

v c
AI

i i !

I

-f t*I

llIiI

EV

aP 4)

o
02 2

c

4-W41

41A

U#A

-4 vi 0

I- t.- 4Ac I
4114 0 L.

in4 1 08 'U w, 4 -

U~1 4-=2~l

L. 0L. Z- 4A# 40'

41 i 41 41 c- a

'z

o ~ ~ 2 u . U . 'U -

M 4A 4A un Z

0 1.1 a'.'

414841 ...I 41 '

UJ -CO 41- 21 4
V) w8 UAL . 4A 8

8.1 X8 CL

400

___ __ __ - V_ .- - a

A . 41 L
Lo

4a cm coIn I.

CU at CD C L. i

CK cm t

La Lai-

LI.

30(

APPENDIX J

PROCEDURES FOR ASSESSING SOFTWARE QUALITY

(Ref 28)

APPENDIX J

PROCEDURES FOR ASSESSING SOFTWARE QUALITY

The benefits of applying the software quality metrics are realized when
the information gained from their application is analyzed. The analyses
that can be done based on the metric data are described in the subsequent
paragraphs. There are three levels at which analyses can be performed.
These levels are related to the level of detail to which the quality

assurance organization wishes to go in order to arrive at a quality assess-
ment (Ref 28).

Inspector's Assessment

The first level at which an assessment can be made relies on the discipline
and consistency introduced by the application of the worksheets. An
inspector, using the worksheets, asks the same questions and takes the
same counts for each module's source code or design document, etc. that is
reviewed. Based on this consistent evaluation, a subjective comparison
of products can be made.

Document Inspector's Assessment. The last section in each worksheet
is a space for the inspector to make comments on the quality observed
while applying the worksheet. Comments should indicate an overall assessment
as well as point out particular problem areas such as lack of comments,
inefficiencies in implementation, or overly complex control flow.

Compile Assessments for System Review. By compiling all of the
inspector's assessments on the various documents and source code availableat any time during the development, deficiencies can be identified.

Sensitivity Analysis

The second level of detail utilizes experience gained through the applica-

tion of metrics and the accumulation of historical information to take
advantage of the quantitative nature of the metrics. The values of the
measurements are used as indicators for evaluation of the progress toward
a high quality product.

At appropriate times during a large-scale development, the application of
the worksheets allows calculation of the metrics. The results of these
calculations is a matrix of measurements. The metrics that have been
established to date are at two levels -- system level and module level.
The approach to be described is applicable to both level% and will be
described in relationship to the module level metric.

3()F

A n by k matrix of measurements results from the applicati(n of the
metrics to the existing products of the development (e.g., at design, the
products might include review material, design specifications, test plans,
etc.) where there are k modules and n module level measurements applicable
at this particular time.

mil m12. mlk

Mn. m21
d

mnl m nk

This matrix represents a profile of all of the modules in the system with
respect to a number of characteristics measured by the metrics. The
analyses that can be performed are described in the following steps:

Assess Variation of Measurements. Each row in the above matrix
represents hnw each module in the system scored with respect to a parti-
cular metric. By summing all the values and calculating the average and
standard deviation for that metric, each individual module's score can
then be compared with the average and standard deviation. Those modules
that score less than one standard deviation from the average should be
identified for further examination. These calculations are illustrated
below:

k
for metric i; Average Score = Ai =M Mi./k

j=l

k
Standard Deviation = Ji zj l (Mij-Ai) 2/k

Report Module j if Mij<Ai - ji

Assess Low System Scores. In examining a particular measure across
all modules, consistently low scores may exist. It nay be that a design
or implementation technique used widely by the development team was the
cause. This situation identifies the need for a new standard or stricter
enforcement of existing standad to improve the overall development
effort.

Assess Scores Against Thresholds. As experience is gained with the
metrics and data is accumulated, threshold values or industry acceptable
limits may be established. The scores, for each module for a particular
metric should be compared with the established threshold. A simple
example is the percent of comments per line of source code. Certainly
code which exhibits only one or two percent measurements for this metric
would be identified for corrective action. It may be that ten percent
is a minimum acceptable level. Another example is the complexity measure.
A specific value of the complexity measure greater than some chosen value
should be identified for corrective action.

309

Report Module j if Mij < Ti (or.>T for complexity measures)

Where Ti = threshold value

specified for metric i

Use of Normalization Function to Assess Quality

The last level of assessing Quality is using the normalization functions to
predict the quality in quantitative terms. The normalization functions
are utilized in the following manner.

For a particular time there is an associated matrix of coefficients which
represent the results of linear multivariate regression analyses against
empirical data (past software developments). These coefficients, when
multiplied by the measurement matrix results in an evaluation (prediction)
of the quality of the product based on the development to date. This
coefficient matrix, shown below, has n columns for the coefficients of
the various metrics and 11 rows for the 11 quality factors.

C1l c12 CIn

Cm

Cd-I
Cll,1 Cll,n

To evaluate the current degree or level of a particular quality factor, i,
for a module, j, the particular column in the measurement matrix is
multiplied by the row in the coefficient matrix. The resultant value:

Cil mij + ci,2 m2,j + ci, n mm'j - ri, j

is the current predicted rating of that module, j. for the quality factor, i.
This predicted rating is then compared to the previously established rating
to determine if the quality is at least as sufficient as required. The
coefficient matrix should be relatively sparse (many Cijt = 0). Only sub-
sets of the entire set of metrics applicable at any one time relate to the
criteria of any particular quality factor.

Multiplying the complete measurement matrix by the coefficient matrix
results in a ratings matrix. This matrix contains the current predicted
ratings for each module for each quality factor. Each module then can be
compared with the preset rating for each quality factor.

r11 r12 " " rl k

CM=R m

r r ll,k

510

This approach represents the most formal approach to evaluating the
quality of a product utilizing the software quality metrics.

To use the normalization functions that currently exist the following
steps should be performed.

AppDy Normalization Function. Table XXI contains the normalization
functions that currently exist. If any of the quality factors identified in
that table have been specified as a requirement of the development, then
the metrics identified in the table should be substituted into the equation
and the predicted rating calculated. Normalization functions which
include several metrics can be used if available, otherwise functions for
individual metrics should be used. This predicted rating should be com-
pared with the specified rating.

To illustrate the procedure the normalization function that has
been developed for the factor Flexibility will be used. The normalization
function, applicable during the design phase, relates measures of modular
implementation to the flexibility of the software. The predicted rating
of flexibility is in terms of the average time to implement a change in
specifications. The normalization function is shown in Figure 19. The
measurements associated with the modular implementation metric are taken
from design documents. The measurements involve identifying if input,
output and processing functions are mixed in the same module, if applica-
tion and machine-dependent functions are mixed in the same module and if
processing is data volume limited. As an example, assume the measurements
were applied during the design phase and a value of 0.65 was measured.
Inserting this value in the normalization function resuits in a predicted
rating for flexibility of .33 as identified by point A in Figure 19. If
the Development Manager had specified a rating of 0.2 which is identified
by point B, he has an indication that the software development is pro-
gressing well with respect to this desired quality.

Calculate Confidence in Qualitv Assessment. Using statistical tech-
niques a level of confidence can be calculated. The calculation is based
on the standard error of estimate for the normalization function and can
be derived from a normal curve table found in most statistics texts. An
example of the deviation process is shown in Figure 20 for the situation
described above. Here it is shown that the Development Manager has an
86 percent level of confidence that the flexibility of the system will
be better than the specified rating.

Reporting Assessment Results

Each of the preceding steps described in this section are easily auto-
mated. If the metrics are applied automatically then thp metric data is
available in machine readable form. If the worksheets are applied
manually, then the data can be entered into a file, used to calculate the
metric, and formatted into the measurement matrix format. The automation
of the analyses involves simple matrix manipulations. The results of the
analyses should be reported at various levels of detail. The formats of
the reports are left to the discretion of the quality assurance organiza-
tion. The content of the reports to the different managers is recommended
in the following paragraphs.

311

Table XXI. hIornali-atlon :.nc-.ons

.aELz.I4Th r, (E3'GN)

MUL'A,\ . E184 M .19 IT.1 Error Tolerance Checkis:
FJCT:,N T.1 3.3 Si.3 CcmDlexity 'eiS;re

1,40 1'/tUAL .34 N
FUNCTIONS .34 M1 _. _ _

RELI8.2Si-rY (KYPLEMENrATIRCN) ______________

MULTIVARIlATE-4" ,1.

FUNCTION .48Mr,.- 1 14 S1 ET.I Error Tolerance Checxlist
51.3 Comolexity Yeasure

INOVIDUAL .57 M.ET .1 CS. Ceslgn Str-ucture MeasureI 51.4 Coding Simolicity Measure
.53 M S.3

14A INT A NA8 ILIr, (WOESIG4) .53_m_
_ _ _ _

INCIVIDUAL .57 M15.3 S1.3 Complexity Measure
FUNCTION .53 [S.1 SI.1 Design Structure measure

NAENTAINABILIif M(PLEMENTATTON)

MILTIVARIATE -..2.61 s eMareFUNCTION Si.3 " * 33 S3.21 SI.3 :omplexity Measure
-C.0.2Z :4cdular implementation

M4easureNNOtVtOUAL SO.Z Effec:iveness of Ccnmens
FUNCTIONS 2.1 MS.3 Measure

.71 XSO.2 SO 3 Descriptiveness of
.6 M rmpl ementat-.on6 SO. 3 Language edsure

.S .1 S1.1 Oesign Structure-.4 51.1 Measure

MS[. 4 S1.4 Codin Smolcity e sure

FLE 13ILITY (DESIGN)

INOIDVOUAL
FUNCTI CIS .51 'MO.2 MO.2 Modular [mole-nentatic-n

. G.GE.2 Generality Thecklis:

(Continued)

____._________- , . *..,

Table]ZZ. Normalization Functions (Continued)

FLt-:X8 T? (;,M4LEMENTATION)

MULT!'IARIXT.E .ZZ'.,, ' -4.,'IE. I.9M.-
FUNCTION

OIJOUAL
FUNCTIONS "_Iqz 40.2 Modular Ilmplementation

Measure71m"GE.2 GE.2 Generality Checklist
.SM0.2 S0.2 Effectiveness of Comments

"" $0.3 S0.3 Descrio tveness of
Implementa ti on

,,(t Language -Measure

,4ULTIVARATE -. 7+. 1 9 so. 7 76S. S2 Mo .3 5 1
r UNCTION _________ ___ ___.1_

[MO P1 !DUAL IFt O4 S "0 t.0 S0.1 Quantity of CommentsFUNCIONS1.0I.M. 1 SO.2 Efctiveness of

.lM tI Comments Measure

1.5S0. SO.3 Descriptiveness of
Imple1mentrat.i on

Language ,Measure
MI. Machine tndeoenmdence

Measure
St.1 Design Structre

Measure

' -

NI

I-Z

Of

314h

o,,

* \ -

,a A.

- 314

C)C

aca
ac cc

o Cc

C3C

E~E-

upS

C16

Report to the Acquisition Manager/Development Manager. The report
content to the Development Manager should provide summary information
about the progress of the development toward the quality goals identified
at the beginning of the project.

For example, if ratings were specified for several quality factors,
the current predicted ratings should be reported.

PREDICTED RATING

QUALITY GOALS BASED ON DESIGN DOCUMENT

RELIABILITY .9 .8

MAINTAINABILITY .8 .95

If specific ratings were not identified but the important qualities
were identified, a report might describe the percentage of modules that
currently are judged to be below the average quality (as a result of the
sensitivity analysis) or that are below a specified threshold value (as
a result of the threshold analysis). These statistics provide a progress
status to the manager. Further progress status is indicated by reporting
the quality growth of the system or of individual modules. The quality
growth is depicted by reporting the scores achieved during the various
phases of development. Ultimately the ratings should progressively
score higher than those received during requirements. This progress is
based on the identification of problems in the early phases which can
then be corrected.

Reports to Quality Assurance Manager, In addition to the summary
quaity progress reports, the quality assurance manager and his staff will
want detailed metric reports. These reports will provide all of the
results of the Analyses and perhaps provide the measurement matrix itself
for examinations. In addition to the detailed reports, the quality
asstirance manager should be provided with reports on the status of the
application of the metrics themselves by the quality assurance staff.
These status reports will provide information on total number of modules
and the number which inspectors have analyzed.

Reports to the Development Team. The development team should be
provided detailed information on an exception basis. This information is
derived from the analyses. Examples of the information would be quality
problems that have been identified, which characteristics or measurements
of the software products are poor, and which modules have been identified
as requiring rework. These exception reports should contain the details
of why the assessment revealed them as potential problems. It is based
on this information that corrective actions will be taken.

APPENDIX K

I SAMPLE OF AMT REPORTS

(Ref 88)

_ -I

WO)R !,tit: RE Pfl T

TIt i ksti.tt report dl sp Ij1 s the rd w data etntert-o i i t mch o-irksheet It

rt prsrits the current values in tti, idat a b as . It i.% used to verify and

tadaCk data entry.

AUTOMATED MEASUREMENT TOOL

WORKSHEET REPORT

WORKSHEET 3

DATA Base Amtexs
MODULE: EXSGET DATE: 12/23/81

I. STRUCTURE (RELIABILITY, MAINTAINABILITY, TESTABILITY)
1. NUMBER OF LINES OF CODE 95.
2. NUMBER OF LINES EXCLUDING COMMENTS 47.
3. NUMBER OF MACHINE LEVEL LANGUAGE STATEMENTS 0.
4. NUMBER OF DECLARATIVE STATEMENTS 4.
5. NUMBER OF DATA MANIPULATION STATEMENTS 5.
6. NUMBER OF STATEMENT LABELS (EXCLUDING FORMAT STATEMENTS 0.
7. NUMBER OF ENTRANCES INTO MODULE 1.

ENTER [CR] TO CONTINUE 'E'-TO EXIT:

8. NUMBER OF EXISTS FROM MODULE 2.
9. MAXIMUM NESTING LEVEL 3.
10. NUMBER OF DECISION POINTS (IF, WHILE, REPEAT, DO, CASE) 10.
11. NUMBER OF SUB-DECISION POINTS 0.
12. NUMBER OF CONDITIONAL BRANCHES (COMPUTED TO GO 6.
13. NUMBER JF UNCONDITIONAL BRANCHES (GOTO, ESCAPE) 0.
14. NUMBER OF LOOPS (WHILE, DO) 4.
15. NUMBER OF LOOPS WITH JUMPS OUT OF LOOPS 0.
16. NUMBER OF LOOPS INDICIES THAT ARE MODIFIED 0.
17. NUMBER OF MODULE MODIFICATIONS (SWITH, ALTER) 0.
18. NUMBER OF NEGATIVE OR COMPLICATED COMPOUND BOOLEAN EXPRESSIONS 0.
19. IS A STRUCTURED LANGUAGE USED? YES
20. IS FLOW TOP TO BOTTOM (ABSENSE OF BACKWARD BRANCHING GOTO's)? YES

II. CONCISENESS (MAINTAINABILITY)
1. NUMBER OF OPERATORS 4.
2. NUMBER OF UNIQUE OPERATORS 1.
3. NUMBER OF OPERANDS 8.
4. NUMBER OF UNIQUE OPERANDS 3.

ENTER (CR) TO CONTINUE, 'E' TO EXIT:

i ,i

EXCEPT ION REPORT

The exception report delivers the relationship of each module to a given

threshold value of a particular metric. The relationship (less thdn, equal

to, or greate- then) and the threshold value is input from the user. This
report can be used to identify modules whose scores do not meet a certain

threshold, identifying them as potential problems.

AUTOMATED MEASUREMENT TOOL

EXCEPTIONS REPORT

OATABASE: AMTEXS DATE: 12/23/81

METRIC: ET. 2

PHASE: MODULE IMPLEMENTATION

THRESHOLD VALUE: 0.65

RELATION: LESS THAN

THE FOLLOWING MODULES ARE WITHIN RANGE REQUESTED

MODULE NAME VALUE

EXSCEX 0.

EXCDLP 0.500

EXSDBG 0.333

EXSHLP 0.

EXSPGR 0.

EXSUPK 0.

.

: .

31

NORMALIZATION REPORT

The Normalization Report provides the user with the overall ratirng of a

selected quality factor. A series of regression eouations are displayed whi,-h

have been empirically derived from research. The current metric values a:'e

substituted in the equations and a rating for the selected quality factor is
calculated. Regression, equations exist for the quality factors reliability,

maintainability, portability, and flexibility only:

AUTOMATED MEASUREMENT TOOL

NORMALIZATION FUNCTION REPORT

DATABASE: AMTEXS

MODULE: EXSGET DATE: 12/23/81

DESIGN NORMALIZATION FUNCTION IMPLEMENTATION NORMALIZATION FUNCTION

FACTOR: PORTABILITY

NO DESIGN NORMALIZATION FUNCTION PORTABILITY - -1.7 + .19 (SD.l) +
FOR PORTABILITY FACTOR .76(S0.2) + 2.5(SD.3) + .64(MI.1)

SD.1 - 0.426

SD.2 - 0.857

SD.3 - 1.000

MI.1 - 0.972

PORTABILITY = 2.154

3

PETRI(REPORT

This report calculates the value of each metric catagorized by factor and by

development phase. This report is used to d, t.-rmine a total picture of the

project as measurements are taken.

AUTOMATED MEASUREMENT TOOL

METRIC REPORT/MODULE IMPLEMENTATION PHASE

DATABASE: AMTEXS

MODULE: EXSGET DATE: 12/23/81

FACTOR CRITERIA METRIC VALUE

CORRECTNESS Traceability TR.1 1.000
Completeness CP.1 0.667
Consistency/Procedure CS.1 1.000
Consistency/Data CS.2 0.500

RELIABILITY Consistency/Procedure CS.1 1.000
Consistency/Data CS.2 0.500
Accuracy AY.1 1.000
Error Tolerance/Control ET.l 1.000
Error Tolerance/Input Data ET.2 1.000
Error Tol./Computational Fail. ET.3 0.
Design Structure SI.I 0.625
Complexity S1.3 0.100
Code Simplicity SI.4 0.722

MAINTAINABILITY Consistency/procedure CS.I 1.000
Consistency/Data CS.2 0.500
Design Structure SI.I 0.625
Complexity ST.3 0.100
Code Simplicity 51.4 0.722
Modular Implementation MO.2 0.750
Quantity of Comments SD.1 0.426
Effectiveness of Commentt SD.2 0.857
Conciseness CO.1 1.000

<A TESTABILITY Design Structure SI.1 0.625
Complexity SI.3 0.100
Code Simplicity SI.4 0.722
Modular Implementation MO.2 0.750
Quantity of Comments SD.1 0.426
Effectiveness of Comments SD.2 0.857
Descriptiveness of ImpI. Lang. SD.3 1.000

PORTABILITY Modular Implementation MO.2 0.750
Ouantity of Comments S0.1 0.426

5 saw

'._I

WWW.

FACTOR CRITERIA METRIC VALJIF

Effectiveness of Comments SD.2 O.P57

Descriptiveness of Imp]. Lang. SD.3 1.000

System Software/Independence SS.1 0.500

Machine Independence MI.1 0.972

REUSABILITY Modular Implementation MO.2 0.750

Generality/Implementation GE.2 0.750

Quantity of Comments SO.1 0.426

Effectiveness of Comments SD.2 0.857

Descriptiveness of Impl. Lang. SD.3 1.000

System Software/Independence SS.1 0.500

Machine Independence MI.1 0.972

FLEXIBILITY Modular Implementation MO.2 0.750

Generallty/Implementation GE.2 0.750

Data Storage Expansion EX.1 0.

Computational Extensibility EX.2 0.500

Quantity of Comments SO.] 0.426

Effectiveness of Comments S0.2 0.857

Descriptiveness of Impi Lang. SO.3 1.000

INTEROPERABILITY Modular Implementation MO.2 0.750

EFFICIENCY Iterative Processing EE.2 1.000

Data Usage EE.3 0.668

*1

STATISTICS REPORT

The Statistics Report provides a profile of COBOL -onstroicts for edch mo dule.

AUTOMATED MEASUREMENT TOOL

STATISTICS REPORT

DATABASE: AMTEXS

MODULE: EXSGET DATE: 12/23/81

NUMBER OF LINES OF CODE 95.
NUMBER OF PERFORM STATEMENTS 4.

NUMBER OF EXTERNAL CALLS 0.

NUMBER OF EXECUTABLE STATEMENTS (PROCECURE DIVISION) 43.
NUMBER OF COMMENTS 48.
NUMBER OF DECLARATIONS (DATA DIVISION) 4.

NUMBER OF LABELS 0.
NUMBER OF I/O REFERENCES 6.
NUMBER OF REDEFINES (EQUIVALENTS) 0.
NUMBER OF LEVEL 88 DATA ITEMS (LOCAL VARIABLES) 1.

I

(2 i

.a , --- -.

SUMMARY REPORT

The summary report provides a Summary of th~e metric scores for d) I of the
modules in the system.

AUTOMATED MEASUREMEN4T TOOL

METRIC SUMMARY REPORT

DATA8AE: AMTEXS DATE: 12123181

MODULE: EXSGET

AY.) - 1.000 CO.I - 1.000 CPA.a 0.667 CS.l - 1.000

CS.? - 0.500 EE.2 - 1.000 EE.3 - 0.668 ET.1 - 1.000

ET.? - 1.000 ET.3 - 0. EX.1 - 0. EX.2 - 0.500
GE.? a 0.750 MI.1 a 0.972 MO.2 a 0.750 SD.1 = 0.426
SD.? - 0.857 S0.3 - 1.000 S1.1 z 0.625 SI.3 - 0.100

SI.4 - 0.722 55.1 = 0.500 TR.1 a 1.000

QUALITY GROWTH REPORT

When the user wishes to track the value of a particular metric over time, the

Quality Growth Report will furnish a tabular display of the scores of a

selected metric over the pihases of the project. This report is used to track

a particular metric through a project to see how its value changes.

AUTOMATED MEASUREMENT TOOL

QUALITY GROWTH REPORT

DATABASE: AMTEXS

MODULE: EXSGET DATE: 12/23/81

METRIC DETAILED MODULE

DESIGN IMPLEMENTATION

ET.2 0.750 1.000

iMET

MATRIX REPORT

This report displays the average and standard deviations for all metric ,alues

modules. This report displays all of this information in a matrix form

allowing the user to easily identify modules with metric scores that vary from

the system average.

AUTOMATED MEASUREMENT TOOL

MATRIX REPORT

DATABASE: AMTEXS

PAGE = I DATE: 12/23/81

MODULE NAME AY.1 CO.] CP.I CS.1 CS.2 EE.2

EXSCEX 0. 1.000 0. 0. 0. 1.000

EXSCHK 1.000 1.000 0.667 1.000 0.500 1.000

EXSCLP 1.000 1.000 0.667 1.000 0.500 1.000

EXSOBG 0. 1.000 0. 0. 0. 0.

EXSGET 1.000 1.000 0.667 1.000 0.500 1 000

EXSHLP 0. 1.000 0.833 1.000 0.500 0.

EXSPGR 0. 1.000 1.000 1.000 0.500 1.000

EXSQRY 0. 1.000 0.667 1.000 0.500 0.

EXSSSM 0. 1.000 1.000 1.000 0.500 0.

EXSUPK 0. 1.000 0.625 1.000 0.500 1.000

AVERAGE 0.300 0.900 0.550 0.700 0.350 0.500

STANDARD DEVIATION 0.438 0.316 0.401 0.483 0.242 0.527

L1

.-:

MODULE REPORT

This report displays the catalog of modules th.3t shave been entered into the

database. It providss a status report on the database.

AUTOMATED MEASUREMENT TOOL

MODULES REPORT

OATABASE: AMTEXS DATE: 12/23/81

WS1 CONTAINS SOME NIL VALUES

WS2A CONTAINS SOME NIL VALUES

THE FOLLOWING MODULES ARE PRESENTLY IN THE CURRENT DATABASE:

1. EXSCEX ** 2. EXSCHK *

3. EXSCLP * 4. EXSDBG **

5. EXSGET * 6. EXSHLP *

7. EXSPGR * 8. EXSQRY *

9. EXSSSM * 10. EXSUPK *

TOTAL NUMBER OF MODULES IN DATABASE IS 10.

NOTE: * INDICATES BOTH WS28 AND WS3 CONTAIN SOME NIL VALUES.

NOTE: e IND- ATES WS2B CONTAINS SOME NIL VALUES.

I

VITA

Stanley J. Jarzombek, Jr. was born on 27 May 1955 in

McAllen, Texas. He graduated from Sharyland High Schcol in

Mission, Texas in 1973 and attended the University of Texas

at Austin for one year prior to enlisting in the USAF in

August 1974. He served three years in personnel. Promoted

below-the-zone, he made Sergeant at one year and seven

months. Selected for ASCP, he returned to the University

of Texas to complete his undergraduate education. He

received a B.A. in Computer Science and a B.B.A. in Data

Processing and Analysis. Upon graduation, he received his

commission in the USAF as a Distinguished Graduate through

the ROTC program. He then entered the School of

Engineering, Air Force Institute of Technology, in

August 1980.

Permanent address: Route 2, Box 1592-f

McAllen, Texas 78501

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (ften Date Entered)

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
______ REPORT____DOCUMENTATION______PAGE_ BEFORECOMPLETINGFORM

I. REPORT NUMBER 2GVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

APIT/GCSft4A/82M-1 5 "
4. TITLE (and Subtitle) SOFTWARE QUALITY METICS: A SOFT- S. TYPE OF REPORT & PERIOD COVERED
WARE MANAGEMENT MON ITORING METHOD FOR AFLO IN ITS Master's Thesis
SOFTWARE QUALITY ASSURANCE PROGRAM FOR THlE _____________

QUANTITATIVE ASSESSMENT OF THlE SYSTEM DEVELOPMENT 6. PERFORMING ORG. REPORT NUMBER

LIFE CYCLE UNTDER CONFIGURATION MANAGEMENT ______________

7. AUTHOR(&) 8. CONTRACT OR GRANT NUMBER(&)

Stanley J. Jarzombek, Jr., 2nd Lt, USAF

9. PERFORMING ORGANIZATION NAME AND ADDRESS .10.. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS.

School of Engineering
Air Force Institute of Technology, WPAFB, OH 45433 .

11. CONTROLLING OFFICE NAME AND ADDPRESS 12. REPORT DATE

March 1982
Department of Mathematics .13. NUMBER OF PAGES
AFIT/ENC, WPAFB,'OH 45433 *. .327

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

I5a. DECLASSI FICATION/ DOWNGRADING
SCHEDULE

I6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

15 APR 18
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Dean 10'i - ch and
ProfessionalI Developmlenlt

>Air Force Institute ot Tedinoogy (ATC)
Wright- Patterson AFB, 041 45433

IS. SUPPLEMENTARY NOTES
APPROVD FRp18L5!LES 1AW AFR 190-17

19. KEY WORDS (Continue on reverse aide if necessary end identify by block number) DECISION MAKING

KAUTOMATED iM"A)URIP4ENT QUALITY ASSURANCE RELIABILITY

Software Quality Assurance (sQA) is recognized as an essential function
needed to monitor the software system development life cycle (SDLC). The
fr-uiework established for Software Quality Metrics (SQM) provides goal-directed
system specifications and the ability to quantitatively assess the quality of
the system under development. The Automated Measurement Tool (ANTT), which
operationalizes the application of SQM, functions as the core of a Decision
Support System, providing quantitative measures and various levels of reports.

A literature survey of SQjA aids enabled the recommendation of a minimum\

DD I F ll1 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dot&e Pnteredi

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

set of tools and techniques to be used by the SQA program for monitoring the
SDLC, which has been envisioned as an iterative process controlled by
management. Recognizing the functional impact of specific information asF .. the key to objectively monitoring and controlling the software system
development, the decision-making model was conceptualized as three subsystems
within each phase of the SDLC: scanning (afferent), organizing (intelligence)
and decision (efferent). The use of checklists by system developers
highlights a prescriptive method of goal-directed development. The thesis
provides justification for using SQM by reviewing the need and demonstrating
how the concepts can now be t sed.

S .S

j $KCUI ITY CLASSIFICATION OF" THIS PAGE(RIen Data Enteied)

